Responsible Reporting for Frontier AI Development
- URL: http://arxiv.org/abs/2404.02675v1
- Date: Wed, 3 Apr 2024 12:18:45 GMT
- Title: Responsible Reporting for Frontier AI Development
- Authors: Noam Kolt, Markus Anderljung, Joslyn Barnhart, Asher Brass, Kevin Esvelt, Gillian K. Hadfield, Lennart Heim, Mikel Rodriguez, Jonas B. Sandbrink, Thomas Woodside,
- Abstract summary: Mitigating the risks from frontier AI systems requires up-to-date and reliable information about those systems.
Organizations that develop and deploy frontier systems have significant access to such information.
By reporting safety-critical information to actors in government, industry, and civil society, these organizations could improve visibility into new and emerging risks posed by frontier systems.
- Score: 2.6591642690968067
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mitigating the risks from frontier AI systems requires up-to-date and reliable information about those systems. Organizations that develop and deploy frontier systems have significant access to such information. By reporting safety-critical information to actors in government, industry, and civil society, these organizations could improve visibility into new and emerging risks posed by frontier systems. Equipped with this information, developers could make better informed decisions on risk management, while policymakers could design more targeted and robust regulatory infrastructure. We outline the key features of responsible reporting and propose mechanisms for implementing them in practice.
Related papers
- Security Threats in Agentic AI System [0.0]
The complexity of AI systems combined with their ability to process and analyze large volumes of data increases the chances of data leaks or breaches.
As AI agents evolve with greater autonomy, their capacity to bypass or exploit security measures becomes a growing concern.
arXiv Detail & Related papers (2024-10-16T06:40:02Z) - Coordinated Disclosure of Dual-Use Capabilities: An Early Warning System for Advanced AI [0.0]
We propose Coordinated Disclosure of Dual-Use Capabilities (CDDC) as a process to guide early information-sharing between advanced AI developers, U.S. government agencies, and other private sector actors.
This aims to provide the U.S. government, dual-use foundation model developers, and other actors with an overview of AI capabilities that could significantly impact public safety and security, as well as maximal time to respond.
arXiv Detail & Related papers (2024-07-01T16:09:54Z) - Application of the NIST AI Risk Management Framework to Surveillance Technology [1.5442389863546546]
This study offers an in-depth analysis of the application and implications of the National Institute of Standards and Technology's AI Risk Management Framework (NIST AI RMF)
Given the inherently high-risk and consequential nature of facial recognition systems, our research emphasizes the critical need for a structured approach to risk management in this sector.
arXiv Detail & Related papers (2024-03-22T23:07:11Z) - A Framework for Exploring the Consequences of AI-Mediated Enterprise Knowledge Access and Identifying Risks to Workers [3.4568218861862556]
This paper presents the Consequence-Mechanism-Risk framework to identify risks to workers from AI-mediated enterprise knowledge access systems.
We have drawn on wide-ranging literature detailing risks to workers, and categorised risks as being to worker value, power, and wellbeing.
Future work could apply this framework to other technological systems to promote the protection of workers and other groups.
arXiv Detail & Related papers (2023-12-08T17:05:40Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
The development and regulation of AI seems to have reached a critical stage.
Some experts are calling for a moratorium on the training of AI systems more powerful than GPT-4.
This paper analyses the most advanced legal proposal, the European Union's AI Act.
arXiv Detail & Related papers (2023-11-03T12:51:37Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management [65.0114141380651]
ThreatKG is an automated system for OSCTI gathering and management.
It efficiently collects a large number of OSCTI reports from multiple sources.
It uses specialized AI-based techniques to extract high-quality knowledge about various threat entities.
arXiv Detail & Related papers (2022-12-20T16:13:59Z) - Foveate, Attribute, and Rationalize: Towards Physically Safe and
Trustworthy AI [76.28956947107372]
Covertly unsafe text is an area of particular interest, as such text may arise from everyday scenarios and are challenging to detect as harmful.
We propose FARM, a novel framework leveraging external knowledge for trustworthy rationale generation in the context of safety.
Our experiments show that FARM obtains state-of-the-art results on the SafeText dataset, showing absolute improvement in safety classification accuracy by 5.9%.
arXiv Detail & Related papers (2022-12-19T17:51:47Z) - Trustworthy AI Inference Systems: An Industry Research View [58.000323504158054]
We provide an industry research view for approaching the design, deployment, and operation of trustworthy AI inference systems.
We highlight opportunities and challenges in AI systems using trusted execution environments.
We outline areas of further development that require the global collective attention of industry, academia, and government researchers.
arXiv Detail & Related papers (2020-08-10T23:05:55Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI developers need to make verifiable claims to which they can be held accountable.
This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems.
We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.
arXiv Detail & Related papers (2020-04-15T17:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.