Quantum enhanced mechanical rotation sensing using wavefront photonic gears
- URL: http://arxiv.org/abs/2404.02797v2
- Date: Thu, 4 Apr 2024 14:15:22 GMT
- Title: Quantum enhanced mechanical rotation sensing using wavefront photonic gears
- Authors: Ofir Yesharim, Guy Tshuva, Ady Arie,
- Abstract summary: We introduce a mechanical rotation quantum sensing mechanism, employing high-dimensional structured light and a compact high-flux.
The system exhibits a 16-fold enhanced super-resolution and 25-fold enhanced sensitivity between different topological charges.
Our approach paves the way for highly sensitive quantum measurements, applicable to various interferometric schemes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum metrology leverages quantum correlations for enhanced parameter estimation. Recently, structured light enabled increased resolution and sensitivity in quantum metrology systems. However, lossy and complex setups impacting photon flux, hinder true quantum advantage while using high dimensional structured light. We introduce a straightforward mechanical rotation quantum sensing mechanism, employing high-dimensional structured light and a compact high-flux (45,000 coincidence counts per second) N00N state source with N=2. The system utilizes two opposite spiral phase plates with topological charge of up to l=16 that convert mechanical rotation into wavefront phase shifts, and exhibit a 16-fold enhanced super-resolution and 25-fold enhanced sensitivity between different topological charges, while retaining the acquisition times and with negligible change in coincidence count. Furthermore, the high photon flux enables to detect mechanical angular acceleration in real-time. Our approach paves the way for highly sensitive quantum measurements, applicable to various interferometric schemes.
Related papers
- Coherent Control of an Optical Quantum Dot Using Phonons and Photons [5.1635749330879905]
We describe unique features and advantages of optical two-level systems, or qubits, for optomechanics.
The qubit state can be coherently controlled using both phonons and resonant or detuned photons.
Time-correlated single-photon counting measurements reveal the control of QD population dynamics.
arXiv Detail & Related papers (2024-04-02T16:25:35Z) - Parallel Quantum-Enhanced Sensing [1.698844240022881]
We show that it is possible to measure local changes in refractive index for all four sensors with a quantum enhancement in sensitivity in the range of $22%$ to $24%$ over the corresponding classical configuration.
Results provide a first step towards highly parallel spatially resolved quantum-enhanced sensing techniques.
arXiv Detail & Related papers (2023-11-02T19:29:51Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Plug-and-play measurement of chromatic dispersion by means of two-photon
interferometry [0.0]
Two-photon interferometry underpins the possibility of entanglement to probe optical materials with unprecedented levels of precision and accuracy.
We report a novel quantum-based method for measuring the frequency dependence of the velocity in a transparent medium.
This technique, using energy-time entangled photons, allows straightforward access to CD value from the visibility of two-photon fringes recorded in a free evolution regime.
arXiv Detail & Related papers (2023-05-25T13:22:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Single-mode input squeezing and tripartite entanglement in three-mode
ponderomotive optomechanics simulations [0.0]
This article proposes a new scheme in which two single-mode squeezed light fields are injected into an optomechanical cavity.
We demonstrate through our numerical simulations that the quantum entanglement can be substantially enhanced with the careful selection of squeezing strength and squeezing angle of the two quadrature squeezed light fields.
arXiv Detail & Related papers (2021-07-15T00:25:59Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Probing excited-state dynamics with quantum entangled photons:
Correspondence to coherent multidimensional spectroscopy [0.0]
Quantum light is a key resource for promoting quantum technology.
One such class of technology aims to improve the precision of optical measurements using engineered quantum states of light.
arXiv Detail & Related papers (2020-05-22T03:22:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.