Parallel Quantum-Enhanced Sensing
- URL: http://arxiv.org/abs/2311.01560v1
- Date: Thu, 2 Nov 2023 19:29:51 GMT
- Title: Parallel Quantum-Enhanced Sensing
- Authors: Mohammadjavad Dowran, Aye L. Win, Umang Jain, Ashok Kumar, Benjamin J.
Lawrie, Raphael C. Pooser, and Alberto M. Marino
- Abstract summary: We show that it is possible to measure local changes in refractive index for all four sensors with a quantum enhancement in sensitivity in the range of $22%$ to $24%$ over the corresponding classical configuration.
Results provide a first step towards highly parallel spatially resolved quantum-enhanced sensing techniques.
- Score: 1.698844240022881
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum metrology takes advantage of quantum correlations to enhance the
sensitivity of sensors and measurement techniques beyond their fundamental
classical limit given by the shot noise limit. The use of both temporal and
spatial correlations present in quantum states of light can extend
quantum-enhanced sensing to a parallel configuration that can simultaneously
probe an array of sensors or independently measure multiple parameters. To this
end, we use multi-spatial mode twin beams of light, which are characterized by
independent quantum-correlated spatial subregions in addition to quantum
temporal correlations, to probe a four-sensor quadrant plasmonic array. We show
that it is possible to independently and simultaneously measure local changes
in refractive index for all four sensors with a quantum enhancement in
sensitivity in the range of $22\%$ to $24\%$ over the corresponding classical
configuration. These results provide a first step towards highly parallel
spatially resolved quantum-enhanced sensing techniques and pave the way toward
more complex quantum sensing and quantum imaging platforms.
Related papers
- Correlated sensing with a solid-state quantum multi-sensor system for
atomic-scale structural analysis [14.301219154831964]
We develop a novel sensing paradigm exploiting the signal correlation among multiple quantum sensors.
With three nitrogen-vacancy centers as a quantum electrometer system, we demonstrate this multi-sensor paradigm.
We obtain the real-time charge dynamics of individual point defects and visualize how the dynamics induce the well-known optical spectral diffusion.
arXiv Detail & Related papers (2024-01-04T08:26:20Z) - Estimation with ultimate quantum precision of the transverse displacement between two photons via two-photon interference sampling measurements [0.0]
We present a quantum sensing scheme achieving the ultimate quantum sensitivity in the estimation of the transverse displacement between two photons interfering at a balanced beam splitter.
This scheme can possibly lead to enhanced high-precision nanoscopic techniques, such as super-resolved single-molecule localization microscopy with quantum dots.
arXiv Detail & Related papers (2023-09-13T11:18:00Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Optimal and Variational Multi-Parameter Quantum Metrology and Vector
Field Sensing [0.0]
We study multi- parameter sensing of 2D and 3D vector fields within the Bayesian framework for $SU(2)$ quantum interferometry.
We present sensors that have limited entanglement capabilities, and yet, significantly outperform sensors that operate without entanglement.
arXiv Detail & Related papers (2023-02-15T17:12:38Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Optical Entanglement of Distinguishable Quantum Emitters [0.0]
We propose and demonstrate an efficient method for entangling emitters with optical transitions separated by many linewidths.
In our approach, electro-optic modulators enable a single photon to herald a parity measurement on a pair of spin qubits.
Working with distinguishable emitters allows for individual qubit addressing and readout, enabling parallel control and entanglement of both co-located and spatially separated emitters.
arXiv Detail & Related papers (2021-08-24T19:37:08Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - On the capability of a class of quantum sensors [10.894655702718783]
We investigate the capability of a class of quantum sensors which consist of either a single qubit or two qubits.
A quantum sensor is coupled to a spin chain system to extract information of unknown parameters in the system.
arXiv Detail & Related papers (2020-03-19T10:56:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.