論文の概要: An Optimization Framework to Personalize Passive Cardiac Mechanics
- arxiv url: http://arxiv.org/abs/2404.02807v1
- Date: Wed, 3 Apr 2024 15:23:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 17:01:36.464527
- Title: An Optimization Framework to Personalize Passive Cardiac Mechanics
- Title(参考訳): パッシブ心臓力学をパーソナライズするための最適化フレームワーク
- Authors: Lei Shi, Ian Chen, Hiroo Takayama, Vijay Vedula,
- Abstract要約: 本研究は、心臓組織の受動力学的特性を推定する逆有限要素解析(iFEA)フレームワークを提案する。
受動的機械的挙動を特徴づけることに焦点をあて、このフレームワークは構造に基づく異方性超弾性モデルを採用している。
本フレームワークは,心相分解CT画像から得られた胆道および左房の心筋モデルを用いて検討した。
- 参考スコア(独自算出の注目度): 1.3127539363517526
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Personalized cardiac mechanics modeling is a powerful tool for understanding the biomechanics of cardiac function in health and disease and assisting in treatment planning. However, current models are limited to using medical images acquired at a single cardiac phase, often limiting their applicability for processing dynamic image acquisitions. This study introduces an inverse finite element analysis (iFEA) framework to estimate the passive mechanical properties of cardiac tissue using time-dependent medical image data. The iFEA framework relies on a novel nested optimization scheme, in which the outer iterations utilize a traditional optimization method to best approximate material parameters that fit image data, while the inner iterations employ an augmented Sellier's algorithm to estimate the stress-free reference configuration. With a focus on characterizing the passive mechanical behavior, the framework employs structurally based anisotropic hyperelastic constitutive models and physiologically relevant boundary conditions to simulate myocardial mechanics. We use a stabilized variational multiscale formulation for solving the governing nonlinear elastodynamics equations, verified for cardiac mechanics applications. The framework is tested in myocardium models of biventricle and left atrium derived from cardiac phase-resolved computed tomographic (CT) images of a healthy subject and three patients with hypertrophic obstructive cardiomyopathy (HOCM). The impact of the choice of optimization methods and other numerical settings, including fiber direction parameters, mesh size, initial parameters for optimization, and perturbations to optimal material parameters, is assessed using a rigorous sensitivity analysis. The performance of the current iFEA is compared against an assumed power-law-based pressure-volume relation, typically used for single-phase image acquisition.
- Abstract(参考訳): パーソナライズされた心臓力学モデリングは、健康と疾患における心臓機能の生体力学を理解し、治療計画を支援する強力なツールである。
しかし、現在のモデルでは、単一の心臓で取得した医療画像のみに制限されており、動的画像取得処理に適用性に制限があることが多い。
本研究では、時間依存医療画像データを用いて、心臓組織の受動力学的特性を推定する逆有限要素解析(iFEA)フレームワークを提案する。
iFEAフレームワークは、新しいネスト最適化方式に依存しており、外部イテレーションは従来の最適化手法を使用して画像データに適合するパラメータを近似し、内部イテレーションはSellierのアルゴリズムを用いてストレスのない参照構成を推定する。
受動的機械的挙動を特徴づけることに焦点をあてて、このフレームワークは構造に基づく異方性超弾性構成モデルと生理学的に関連する境界条件を用いて心筋力学をシミュレートする。
安定な変分多スケールの定式化を用いて, 非線形エラストダイナミックス方程式を解析し, 心臓力学への応用を検証した。
健常者および肥大型閉塞性心筋症(HOCM)3例の心相分解CT像から得られた心室および左心房の心筋モデルを用いて検討した。
繊維方向パラメータ,メッシュサイズ,最適材料パラメータに対する初期パラメータ,摂動の影響を,厳密な感度解析を用いて評価した。
現在のiFEAの性能は、典型的には単相画像取得に使用される電力法に基づく圧力-体積関係と比較される。
関連論文リスト
- Mesh-Informed Reduced Order Models for Aneurysm Rupture Risk Prediction [0.0]
グラフニューラルネットワーク(GNN)は、有限体積(FV)離散化によって得られるメッシュの自然なグラフ構造を利用する。
実験的な検証フレームワークは有望な結果をもたらし,その方法が次元の呪いを克服する有効な代替手段であることを確認した。
論文 参考訳(メタデータ) (2024-10-04T09:39:15Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
逆等角問題の解法としてGeodesic-BPを提案する。
その結果,Geodesic-BPは人工心臓の活性化を高精度に再現できることが示唆された。
パーソナライズド医療への将来のシフトを考えると、Geodesic-BPは将来の心臓モデルの機能化に役立つ可能性がある。
論文 参考訳(メタデータ) (2023-08-16T14:57:12Z) - Simulation-based Inference for Cardiovascular Models [57.92535897767929]
シミュレーションに基づく推論を用いて、波形をプラプシブルな生理的パラメータにマッピングする逆問題を解決する。
臨床応用5種類のバイオマーカーのin-silico不確実性解析を行った。
我々はMIMIC-III波形データベースを用いて,ビビオとシリカのギャップについて検討した。
論文 参考訳(メタデータ) (2023-07-26T02:34:57Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
ニューラル固有微分方程式アルゴリズム(NESDE)を導入する。
NESDEは個別化モデリング、新しい治療ポリシーへの調整可能な一般化、高速で連続的でクローズドな予測を提供する。
本研究は, 総合的・現実的な医療問題におけるNESDEの堅牢性を実証し, 学習力学を用いて, 模擬医療体育環境の公開を行う。
論文 参考訳(メタデータ) (2023-06-24T17:01:51Z) - Self-Supervised Learning for Physiologically-Based Pharmacokinetic
Modeling in Dynamic PET [36.28565007063204]
Voxel-wise physiologically based of the Time Activity curves (TAC) は、臨床ワークフローに関連性のある診断情報を提供することができる。
本研究は、測定されたTACと学習された運動パラメータで生成されたものとの類似性を強制する自己教師付きPET損失定式化を導入する。
我々の知る限りでは、これは非線形の運動モデルと整合した運動パラメータのエルボックスワイズ計算を可能にする最初の自己教師ネットワークである。
論文 参考訳(メタデータ) (2023-05-17T21:08:02Z) - Towards a unified nonlocal, peridynamics framework for the
coarse-graining of molecular dynamics data with fractures [6.478834929962051]
MD模擬材料破壊データセットからメソスケール連続体サロゲートとして周辺力学モデルを抽出する学習フレームワークを提案する。
我々の周辺力学シュロゲートモデルは、トレーニングと異なるグリッド解像度の予測タスクに利用できる。
論文 参考訳(メタデータ) (2023-01-11T16:07:17Z) - Learning correspondences of cardiac motion from images using
biomechanics-informed modeling [7.193217430660012]
予測変位ベクトル場(DVF)上での正則化として, バイオメカニクスを前もって明示的に表現する手法を提案する。
提案手法は,視覚的評価による生体力学的特性の保存性を向上し,定量的評価指標を用いたセグメンテーション性能の優位性を示す。
論文 参考訳(メタデータ) (2022-09-01T20:59:26Z) - Three-dimensional micro-structurally informed in silico myocardium --
towards virtual imaging trials in cardiac diffusion weighted MRI [58.484353709077034]
本稿では,心筋微細構造の数値ファントムを現実的に生成する新しい手法を提案する。
シリコン組織モデルにより、磁気共鳴イメージングの定量的モデルを評価することができる。
論文 参考訳(メタデータ) (2022-08-22T22:01:44Z) - Continuous Forecasting via Neural Eigen Decomposition of Stochastic
Dynamics [47.82509795873254]
本稿では,スパース観測と適応力学を用いた逐次予測のためのニューラル固有SDEアルゴリズムを提案する。
NESDEは、スパース観測による効率的な頻繁な予測を可能にするために、力学モデルに固有分解を適用する。
我々は,MIMIC-IVデータセットにおけるヘパリン投与後の血液凝固の患者適応予測を初めて行った。
論文 参考訳(メタデータ) (2022-01-31T22:16:50Z) - Resource Planning for Hospitals Under Special Consideration of the
COVID-19 Pandemic: Optimization and Sensitivity Analysis [87.31348761201716]
新型コロナウイルス(covid-19)パンデミックのような危機は、医療機関にとって深刻な課題となる。
BaBSim.Hospitalは離散イベントシミュレーションに基づく容量計画ツールである。
BaBSim.Hospitalを改善するためにこれらのパラメータを調査し最適化することを目指しています。
論文 参考訳(メタデータ) (2021-05-16T12:38:35Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。