論文の概要: Physics-constrained coupled neural differential equations for one dimensional blood flow modeling
- arxiv url: http://arxiv.org/abs/2411.05631v1
- Date: Fri, 08 Nov 2024 15:22:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:53:38.009922
- Title: Physics-constrained coupled neural differential equations for one dimensional blood flow modeling
- Title(参考訳): 一次元血流モデリングのための物理制約付き結合型ニューラル微分方程式
- Authors: Hunor Csala, Arvind Mohan, Daniel Livescu, Amirhossein Arzani,
- Abstract要約: 計算心血管モデリングは、血流動態を理解する上で重要な役割を担っている。
有限要素法(FEM)に基づく従来の1次元モデルは、3次元平均解に比べて精度が低いことが多い。
本研究では1次元血流モデルの精度を向上させる物理制約付き機械学習手法を提案する。
- 参考スコア(独自算出の注目度): 0.3749861135832073
- License:
- Abstract: Computational cardiovascular flow modeling plays a crucial role in understanding blood flow dynamics. While 3D models provide acute details, they are computationally expensive, especially with fluid-structure interaction (FSI) simulations. 1D models offer a computationally efficient alternative, by simplifying the 3D Navier-Stokes equations through axisymmetric flow assumption and cross-sectional averaging. However, traditional 1D models based on finite element methods (FEM) often lack accuracy compared to 3D averaged solutions. This study introduces a novel physics-constrained machine learning technique that enhances the accuracy of 1D blood flow models while maintaining computational efficiency. Our approach, utilizing a physics-constrained coupled neural differential equation (PCNDE) framework, demonstrates superior performance compared to conventional FEM-based 1D models across a wide range of inlet boundary condition waveforms and stenosis blockage ratios. A key innovation lies in the spatial formulation of the momentum conservation equation, departing from the traditional temporal approach and capitalizing on the inherent temporal periodicity of blood flow. This spatial neural differential equation formulation switches space and time and overcomes issues related to coupling stability and smoothness, while simplifying boundary condition implementation. The model accurately captures flow rate, area, and pressure variations for unseen waveforms and geometries. We evaluate the model's robustness to input noise and explore the loss landscapes associated with the inclusion of different physics terms. This advanced 1D modeling technique offers promising potential for rapid cardiovascular simulations, achieving computational efficiency and accuracy. By combining the strengths of physics-based and data-driven modeling, this approach enables fast and accurate cardiovascular simulations.
- Abstract(参考訳): 計算心血管モデリングは、血流動態を理解する上で重要な役割を担っている。
3Dモデルは急激な詳細を提供するが、特に流体構造相互作用(FSI)シミュレーションでは計算コストがかかる。
1Dモデルは3次元ナビエ・ストークス方程式を軸対称流の仮定と断面平均化によって単純化することで、計算的に効率的な代替手段を提供する。
しかし、有限要素法(FEM)に基づく従来の1次元モデルは、3次元平均解に比べて精度が低いことが多い。
本研究では,計算効率を保ちながら1次元血流モデルの精度を向上させる物理制約付き機械学習手法を提案する。
本手法は,物理制約付き結合型ニューラル微分方程式(PCNDE)を用いて,広範囲の入射境界条件波形と狭窄遮断率の異なる従来のFEMベースの1Dモデルと比較して,優れた性能を示す。
重要な革新は運動量保存方程式の空間的定式化であり、従来の時間的アプローチから離れ、血流の本質的な時間的周期性に重きを置いている。
この空間神経微分方程式の定式化は、空間と時間を変え、境界条件の実装を簡素化しつつ、結合安定性と滑らか性に関連する問題を克服する。
このモデルは、目に見えない波形やジオメトリの流量、面積、圧力の変化を正確に捉えている。
入力ノイズに対するモデルのロバスト性を評価し,物理用語の相違による損失景観を探索する。
この高度な1Dモデリング技術は、計算効率と精度を達成し、高速な心血管シミュレーションに有望なポテンシャルを提供する。
物理に基づくモデリングとデータ駆動モデリングの強みを組み合わせることで、この手法は高速で正確な心血管シミュレーションを可能にする。
関連論文リスト
- Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) は、シミュレーションのない方法でニューラルSDEを訓練し、ダイナミックスを通してバックプロパゲーションをバイパスする。
絶対的性能と不確実性予測の観点から,3つの臨床時系列データセットの性能向上を実証した。
論文 参考訳(メタデータ) (2024-10-28T15:54:50Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - A Posteriori Evaluation of a Physics-Constrained Neural Ordinary
Differential Equations Approach Coupled with CFD Solver for Modeling Stiff
Chemical Kinetics [4.125745341349071]
我々は,学習中の損失関数に直接物質保存制約を組み込むことで,硬質化学反応学のためのニューラルネットワークフレームワークを拡張した。
これにより、総質量と元素質量が保存されることが保証される。
論文 参考訳(メタデータ) (2023-11-22T22:40:49Z) - Learning Reduced-Order Models for Cardiovascular Simulations with Graph
Neural Networks [1.2643625859899612]
三次元血行シミュレーションデータに基づいて学習したグラフニューラルネットワークを用いて,血流動態をシミュレートする1次元還元次モデルを構築した。
提案手法は,物理に基づく一次元モデルよりも優れた性能を示しながら,推論時の高効率性を保っている。
論文 参考訳(メタデータ) (2023-03-13T17:32:46Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Forecasting through deep learning and modal decomposition in two-phase
concentric jets [2.362412515574206]
本研究はターボファンエンジンにおける燃料室噴射器の性能向上を目的としている。
燃料/空気混合物のリアルタイム予測と改善を可能にするモデルの開発が必要である。
論文 参考訳(メタデータ) (2022-12-24T12:59:41Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
MRV(MR resonance velocimetry)は、流体の速度場を測定するために医療や工学で広く用いられている非侵襲的な技術である。
これまでの研究では、境界(例えば血管)の形状が先駆体として知られていた。
我々は、ノイズの多いMRVデータのみを用いて、最も可能性の高い境界形状と減音速度場を推定する物理インフォームニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-07-16T12:56:09Z) - A Physics-Constrained Deep Learning Model for Simulating Multiphase Flow
in 3D Heterogeneous Porous Media [1.4050836886292868]
物理制約付き深層学習モデルを構築し, 多相多孔質体における多相流の解法について検討した。
モデルは物理に基づくシミュレーションデータから訓練され、物理過程をエミュレートする。
このモデルは物理シミュレーションと比較して1400倍のスピードアップで予測を行う。
論文 参考訳(メタデータ) (2021-04-30T02:15:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。