AI-augmented Automation for Real Driving Prediction: an Industrial Use Case
- URL: http://arxiv.org/abs/2404.02841v1
- Date: Wed, 3 Apr 2024 16:19:47 GMT
- Title: AI-augmented Automation for Real Driving Prediction: an Industrial Use Case
- Authors: Romina Eramo, Hamzeh Eyal Salman, Matteo Spezialetti, Darko Stern, Pierre Quinton, Antonio Cicchetti,
- Abstract summary: This paper reports on a practical experience of developing an AI-augmented solution based on Machine Learning and Model-based Engineering.
In particular, historical data collected in real driving conditions is leveraged to synthesize a high-fidelity driving simulator.
Based on this practical experience, this paper also proposes a conceptual framework to support predictions based on real driving behavior.
- Score: 1.9131868049527914
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The risen complexity of automotive systems requires new development strategies and methods to master the upcoming challenges. Traditional methods need thus to be changed by an increased level of automation, and a faster continuous improvement cycle. In this context, current vehicle performance tests represent a very time-consuming and expensive task due to the need to perform the tests in real driving conditions. As a consequence, agile/iterative processes like DevOps are largely hindered by the necessity of triggering frequent tests. This paper reports on a practical experience of developing an AI-augmented solution based on Machine Learning and Model-based Engineering to support continuous vehicle development and testing. In particular, historical data collected in real driving conditions is leveraged to synthesize a high-fidelity driving simulator and hence enable performance tests in virtual environments. Based on this practical experience, this paper also proposes a conceptual framework to support predictions based on real driving behavior.
Related papers
- A Joint Approach Towards Data-Driven Virtual Testing for Automated Driving: The AVEAS Project [2.4163276807189282]
There is a significant shortage of real-world data to parametrize and/or validate simulations.
This paper presents the results of the German AVEAS research project.
arXiv Detail & Related papers (2024-05-10T07:36:03Z) - Guiding Attention in End-to-End Driving Models [49.762868784033785]
Vision-based end-to-end driving models trained by imitation learning can lead to affordable solutions for autonomous driving.
We study how to guide the attention of these models to improve their driving quality by adding a loss term during training.
In contrast to previous work, our method does not require these salient semantic maps to be available during testing time.
arXiv Detail & Related papers (2024-04-30T23:18:51Z) - Analyze Drivers' Intervention Behavior During Autonomous Driving -- A
VR-incorporated Approach [2.7532019227694344]
This work sheds light on understanding human drivers' intervention behavior involved in the operation of autonomous vehicles.
Experiment environments were implemented where the virtual reality (VR) and traffic micro-simulation are integrated.
Performance indicators such as the probability of intervention, accident rates are defined and used to quantify and compare the risk levels.
arXiv Detail & Related papers (2023-12-04T06:36:57Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z) - Exiting the Simulation: The Road to Robust and Resilient Autonomous
Vehicles at Scale [0.0]
This paper presents the current state-of-the-art simulation frameworks and methodologies used in the development of autonomous driving systems.
A synthesis of the key challenges surrounding autonomous driving simulation is presented.
arXiv Detail & Related papers (2022-10-19T20:32:43Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
Data-driven simulators promise high data-efficiency for driving policy learning.
Small underlying datasets often lack interesting and challenging edge cases for learning interactive driving.
We propose a simulation method that uses in-painted ado vehicles for learning robust driving policies.
arXiv Detail & Related papers (2021-11-23T20:14:02Z) - SilGAN: Generating driving maneuvers for scenario-based
software-in-the-loop testing [0.0]
SilGAN is a deep generative model that eases specification, stimulus generation, and automation of automotive software-in-the-loop testing.
The model is trained using data recorded from vehicles in the field.
arXiv Detail & Related papers (2021-07-05T07:17:49Z) - Learning to falsify automated driving vehicles with prior knowledge [1.4610038284393165]
This paper proposes a learning-based falsification framework for testing the implementation of an automated or self-driving function in simulation.
Prior knowledge is incorporated to limit the scenario parameter variance and in a model-based falsifier to guide and improve the learning process.
arXiv Detail & Related papers (2021-01-25T19:51:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.