論文の概要: Universal Functional Regression with Neural Operator Flows
- arxiv url: http://arxiv.org/abs/2404.02986v1
- Date: Wed, 3 Apr 2024 18:14:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 18:44:36.542998
- Title: Universal Functional Regression with Neural Operator Flows
- Title(参考訳): ニューラル演算子フローを用いたユニバーサル関数回帰
- Authors: Yaozhong Shi, Angela F. Gao, Zachary E. Ross, Kamyar Azizzadenesheli,
- Abstract要約: 普遍汎関数回帰の概念を導入し、非ガウス函数空間上の事前分布を学習することを目指す。
我々は正規化フローの無限次元拡張であるニューラル演算子フロー(OpFlow)を開発した。
- 参考スコア(独自算出の注目度): 13.304120419497544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Regression on function spaces is typically limited to models with Gaussian process priors. We introduce the notion of universal functional regression, in which we aim to learn a prior distribution over non-Gaussian function spaces that remains mathematically tractable for functional regression. To do this, we develop Neural Operator Flows (OpFlow), an infinite-dimensional extension of normalizing flows. OpFlow is an invertible operator that maps the (potentially unknown) data function space into a Gaussian process, allowing for exact likelihood estimation of functional point evaluations. OpFlow enables robust and accurate uncertainty quantification via drawing posterior samples of the Gaussian process and subsequently mapping them into the data function space. We empirically study the performance of OpFlow on regression and generation tasks with data generated from Gaussian processes with known posterior forms and non-Gaussian processes, as well as real-world earthquake seismograms with an unknown closed-form distribution.
- Abstract(参考訳): 関数空間上の回帰は通常、ガウス過程の先行するモデルに限られる。
普遍汎関数回帰の概念を導入し、非ガウス函数空間上の非ガウス函数空間上の事前分布を数学的に導出可能とする。
そこで我々は,正規化フローの無限次元拡張であるNeural Operator Flows (OpFlow) を開発した。
OpFlowは(潜在的に未知の)データ関数空間をガウス過程にマッピングする可逆演算子であり、関数点評価の正確な推定を可能にする。
OpFlowはガウス過程の後方サンプルを描画し、それからデータ関数空間にマッピングすることで、堅牢で正確な不確実性定量化を可能にする。
我々は,ガウス過程と非ガウス過程,および未知の閉形分布を持つ実世界の地震地震計から生成されたデータを用いて,OpFlowの回帰・生成タスクにおける性能を実証的に研究した。
関連論文リスト
- Linearization Turns Neural Operators into Function-Valued Gaussian Processes [23.85470417458593]
ニューラル作用素におけるベイズの不確かさを近似する新しい枠組みを導入する。
我々の手法は関数型プログラミングからカリー化の概念の確率論的類似体と解釈できる。
我々は、異なるタイプの偏微分方程式への応用を通して、我々のアプローチの有効性を示す。
論文 参考訳(メタデータ) (2024-06-07T16:43:54Z) - Approximation of RKHS Functionals by Neural Networks [30.42446856477086]
ニューラルネットワークを用いたHilbert空間(RKHS)を再現するカーネル上の関数の近似について検討する。
逆多重四元数、ガウス、ソボレフのカーネルによって誘導される場合の明示的な誤差境界を導出する。
ニューラルネットワークが回帰マップを正確に近似できることを示すため,機能回帰に本研究の成果を適用した。
論文 参考訳(メタデータ) (2024-03-18T18:58:23Z) - Implicit Manifold Gaussian Process Regression [49.0787777751317]
ガウス過程の回帰は、よく校正された不確実性推定を提供するために広く用いられている。
これは、データが実際に存在する暗黙の低次元多様体のため、高次元データに苦しむ。
本稿では,データ(ラベル付きおよびラベルなし)から直接暗黙構造を完全に微分可能な方法で推定できる手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T09:52:48Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
線形化ラプラス近似(LLA)はベイズニューラルネットワークの構築に有効で効率的であることが示されている。
ベイズ最適化におけるLLAの有用性について検討し,その性能と柔軟性を強調した。
論文 参考訳(メタデータ) (2023-04-17T14:23:43Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - On the inability of Gaussian process regression to optimally learn
compositional functions [3.6525095710982916]
深いガウス過程の先行は、対象関数が構成構造を持つ場合、ガウス過程の先行よりも優れる。
真の函数が一般化加法関数であれば、任意の平均零ガウス過程に基づく後続函数は、ミニマックス速度よりも厳密に遅い速度でのみ真理を回復できることを示す。
論文 参考訳(メタデータ) (2022-05-16T15:42:25Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
乱変数ベクトルの各成分上で動作し,パラメータを全て共有する可逆なODEベースのマッピングを提案する。
NGGPは、様々なベンチマークとアプリケーションに対する競合する最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-10-26T10:45:25Z) - Projection Pursuit Gaussian Process Regression [5.837881923712394]
コンピュータ実験の第一の目的は、分散評価によってコンピュータコードによって与えられる機能を再構築することである。
従来の等方的ガウス過程モデルは、限られたデータポイントに対して入力次元が比較的高いとき、次元の呪いに悩まされる。
非パラメトリック部分は加法ガウス過程の回帰によって駆動される射影追従モデルを考える。
論文 参考訳(メタデータ) (2020-04-01T19:12:01Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
本稿では,2次フーリエ特徴に基づく導関数によるGP回帰のスケーリング手法を提案する。
我々は、近似されたカーネルと近似された後部の両方に適用される決定論的、非漸近的、指数関数的に高速な崩壊誤差境界を証明した。
論文 参考訳(メタデータ) (2020-03-05T14:33:20Z) - Gaussianization Flows [113.79542218282282]
そこで本研究では,サンプル生成における効率のよい繰り返しと効率のよい逆変換を両立できる新しい型正規化フローモデルを提案する。
この保証された表現性のため、サンプル生成の効率を損なうことなく、マルチモーダルなターゲット分布をキャプチャできる。
論文 参考訳(メタデータ) (2020-03-04T08:15:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。