ASAP: Interpretable Analysis and Summarization of AI-generated Image Patterns at Scale
- URL: http://arxiv.org/abs/2404.02990v1
- Date: Wed, 3 Apr 2024 18:20:41 GMT
- Title: ASAP: Interpretable Analysis and Summarization of AI-generated Image Patterns at Scale
- Authors: Jinbin Huang, Chen Chen, Aditi Mishra, Bum Chul Kwon, Zhicheng Liu, Chris Bryan,
- Abstract summary: Generative image models have emerged as a promising technology to produce realistic images.
There is growing demand to empower users to effectively discern and comprehend patterns of AI-generated images.
We develop ASAP, an interactive visualization system that automatically extracts distinct patterns of AI-generated images.
- Score: 20.12991230544801
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative image models have emerged as a promising technology to produce realistic images. Despite potential benefits, concerns grow about its misuse, particularly in generating deceptive images that could raise significant ethical, legal, and societal issues. Consequently, there is growing demand to empower users to effectively discern and comprehend patterns of AI-generated images. To this end, we developed ASAP, an interactive visualization system that automatically extracts distinct patterns of AI-generated images and allows users to interactively explore them via various views. To uncover fake patterns, ASAP introduces a novel image encoder, adapted from CLIP, which transforms images into compact "distilled" representations, enriched with information for differentiating authentic and fake images. These representations generate gradients that propagate back to the attention maps of CLIP's transformer block. This process quantifies the relative importance of each pixel to image authenticity or fakeness, exposing key deceptive patterns. ASAP enables the at scale interactive analysis of these patterns through multiple, coordinated visualizations. This includes a representation overview with innovative cell glyphs to aid in the exploration and qualitative evaluation of fake patterns across a vast array of images, as well as a pattern view that displays authenticity-indicating patterns in images and quantifies their impact. ASAP supports the analysis of cutting-edge generative models with the latest architectures, including GAN-based models like proGAN and diffusion models like the latent diffusion model. We demonstrate ASAP's usefulness through two usage scenarios using multiple fake image detection benchmark datasets, revealing its ability to identify and understand hidden patterns in AI-generated images, especially in detecting fake human faces produced by diffusion-based techniques.
Related papers
- KITTEN: A Knowledge-Intensive Evaluation of Image Generation on Visual Entities [93.74881034001312]
We conduct a systematic study on the fidelity of entities in text-to-image generation models.
We focus on their ability to generate a wide range of real-world visual entities, such as landmark buildings, aircraft, plants, and animals.
Our findings reveal that even the most advanced text-to-image models often fail to generate entities with accurate visual details.
arXiv Detail & Related papers (2024-10-15T17:50:37Z) - MFCLIP: Multi-modal Fine-grained CLIP for Generalizable Diffusion Face Forgery Detection [64.29452783056253]
The rapid development of photo-realistic face generation methods has raised significant concerns in society and academia.
Although existing approaches mainly capture face forgery patterns using image modality, other modalities like fine-grained noises and texts are not fully explored.
We propose a novel multi-modal fine-grained CLIP (MFCLIP) model, which mines comprehensive and fine-grained forgery traces across image-noise modalities.
arXiv Detail & Related papers (2024-09-15T13:08:59Z) - Detecting the Undetectable: Combining Kolmogorov-Arnold Networks and MLP for AI-Generated Image Detection [0.0]
This paper presents a novel detection framework adept at robustly identifying images produced by cutting-edge generative AI models.
We propose a classification system that integrates semantic image embeddings with a traditional Multilayer Perceptron (MLP)
arXiv Detail & Related papers (2024-08-18T06:00:36Z) - Bi-LORA: A Vision-Language Approach for Synthetic Image Detection [14.448350657613364]
Deep image synthesis techniques, such as generative adversarial networks (GANs) and diffusion models (DMs) have ushered in an era of generating highly realistic images.
This paper takes inspiration from the potent convergence capabilities between vision and language, coupled with the zero-shot nature of vision-language models (VLMs)
We introduce an innovative method called Bi-LORA that leverages VLMs, combined with low-rank adaptation (LORA) tuning techniques, to enhance the precision of synthetic image detection for unseen model-generated images.
arXiv Detail & Related papers (2024-04-02T13:54:22Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
The rapid advancement of photorealistic generators has reached a critical juncture where the discrepancy between authentic and manipulated images is increasingly indistinguishable.
Although there have been a number of publicly available face forgery datasets, the forgery faces are mostly generated using GAN-based synthesis technology.
We propose a large-scale, diverse, and fine-grained high-fidelity dataset, namely GenFace, to facilitate the advancement of deepfake detection.
arXiv Detail & Related papers (2024-02-03T03:13:50Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
We introduce a novel approach that trains diffusion models conditioned on embeddings from self-supervised learning (SSL)
Our diffusion models successfully project these features back to high-quality histopathology and remote sensing images.
Augmenting real data by generating variations of real images improves downstream accuracy for patch-level and larger, image-scale classification tasks.
arXiv Detail & Related papers (2023-12-12T14:45:45Z) - Generalizable Synthetic Image Detection via Language-guided Contrastive
Learning [22.4158195581231]
malevolent use of synthetic images, such as the dissemination of fake news or the creation of fake profiles, raises significant concerns regarding the authenticity of images.
We propose a simple yet very effective synthetic image detection method via a language-guided contrastive learning and a new formulation of the detection problem.
It is shown that our proposed LanguAge-guided SynThEsis Detection (LASTED) model achieves much improved generalizability to unseen image generation models.
arXiv Detail & Related papers (2023-05-23T08:13:27Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
Recent advancements in diffusion models have enabled the generation of realistic deepfakes from textual prompts in natural language.
We pioneer a systematic study on deepfake detection generated by state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-04-02T10:25:09Z) - Ensembling with Deep Generative Views [72.70801582346344]
generative models can synthesize "views" of artificial images that mimic real-world variations, such as changes in color or pose.
Here, we investigate whether such views can be applied to real images to benefit downstream analysis tasks such as image classification.
We use StyleGAN2 as the source of generative augmentations and investigate this setup on classification tasks involving facial attributes, cat faces, and cars.
arXiv Detail & Related papers (2021-04-29T17:58:35Z) - Generating Annotated High-Fidelity Images Containing Multiple Coherent
Objects [10.783993190686132]
We propose a multi-object generation framework that can synthesize images with multiple objects without explicitly requiring contextual information.
We demonstrate how coherency and fidelity are preserved with our method through experiments on the Multi-MNIST and CLEVR datasets.
arXiv Detail & Related papers (2020-06-22T11:33:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.