Detecting the Undetectable: Combining Kolmogorov-Arnold Networks and MLP for AI-Generated Image Detection
- URL: http://arxiv.org/abs/2408.09371v1
- Date: Sun, 18 Aug 2024 06:00:36 GMT
- Title: Detecting the Undetectable: Combining Kolmogorov-Arnold Networks and MLP for AI-Generated Image Detection
- Authors: Taharim Rahman Anon, Jakaria Islam Emon,
- Abstract summary: This paper presents a novel detection framework adept at robustly identifying images produced by cutting-edge generative AI models.
We propose a classification system that integrates semantic image embeddings with a traditional Multilayer Perceptron (MLP)
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As artificial intelligence progresses, the task of distinguishing between real and AI-generated images is increasingly complicated by sophisticated generative models. This paper presents a novel detection framework adept at robustly identifying images produced by cutting-edge generative AI models, such as DALL-E 3, MidJourney, and Stable Diffusion 3. We introduce a comprehensive dataset, tailored to include images from these advanced generators, which serves as the foundation for extensive evaluation. we propose a classification system that integrates semantic image embeddings with a traditional Multilayer Perceptron (MLP). This baseline system is designed to effectively differentiate between real and AI-generated images under various challenging conditions. Enhancing this approach, we introduce a hybrid architecture that combines Kolmogorov-Arnold Networks (KAN) with the MLP. This hybrid model leverages the adaptive, high-resolution feature transformation capabilities of KAN, enabling our system to capture and analyze complex patterns in AI-generated images that are typically overlooked by conventional models. In out-of-distribution testing, our proposed model consistently outperformed the standard MLP across three out of distribution test datasets, demonstrating superior performance and robustness in classifying real images from AI-generated images with impressive F1 scores.
Related papers
- Can We Generate Images with CoT? Let's Verify and Reinforce Image Generation Step by Step [77.86514804787622]
Chain-of-Thought (CoT) reasoning has been extensively explored in large models to tackle complex understanding tasks.
We provide the first comprehensive investigation of the potential of CoT reasoning to enhance autoregressive image generation.
We propose the Potential Assessment Reward Model (PARM) and PARM++, specialized for autoregressive image generation.
arXiv Detail & Related papers (2025-01-23T18:59:43Z) - HFMF: Hierarchical Fusion Meets Multi-Stream Models for Deepfake Detection [4.908389661988192]
HFMF is a comprehensive two-stage deepfake detection framework.
It integrates vision Transformers and convolutional nets through a hierarchical feature fusion mechanism.
We demonstrate that our architecture achieves superior performance across diverse dataset benchmarks.
arXiv Detail & Related papers (2025-01-10T00:20:29Z) - Benchmarking Generative AI Models for Deep Learning Test Input Generation [6.674615464230326]
Test Input Generators (TIGs) are crucial to assess the ability of Deep Learning (DL) image classifiers to provide correct predictions for inputs beyond their training and test sets.
Recent advancements in Generative AI (GenAI) models have made them a powerful tool for creating and manipulating synthetic images.
We benchmark and combine different GenAI models with TIGs, assessing their effectiveness, efficiency, and quality of the generated test images.
arXiv Detail & Related papers (2024-12-23T15:30:42Z) - A Sanity Check for AI-generated Image Detection [49.08585395873425]
We propose AIDE (AI-generated Image DEtector with Hybrid Features) to detect AI-generated images.
AIDE achieves +3.5% and +4.6% improvements to state-of-the-art methods.
arXiv Detail & Related papers (2024-06-27T17:59:49Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGID is a training-free and model-agnostic method for robust AI-generated image detection.
RIGID significantly outperforms existing trainingbased and training-free detectors.
arXiv Detail & Related papers (2024-05-30T14:49:54Z) - Large Multi-modality Model Assisted AI-Generated Image Quality Assessment [53.182136445844904]
We introduce a large Multi-modality model Assisted AI-Generated Image Quality Assessment (MA-AGIQA) model.
It uses semantically informed guidance to sense semantic information and extract semantic vectors through carefully designed text prompts.
It achieves state-of-the-art performance, and demonstrates its superior generalization capabilities on assessing the quality of AI-generated images.
arXiv Detail & Related papers (2024-04-27T02:40:36Z) - ASAP: Interpretable Analysis and Summarization of AI-generated Image Patterns at Scale [20.12991230544801]
Generative image models have emerged as a promising technology to produce realistic images.
There is growing demand to empower users to effectively discern and comprehend patterns of AI-generated images.
We develop ASAP, an interactive visualization system that automatically extracts distinct patterns of AI-generated images.
arXiv Detail & Related papers (2024-04-03T18:20:41Z) - StraIT: Non-autoregressive Generation with Stratified Image Transformer [63.158996766036736]
Stratified Image Transformer(StraIT) is a pure non-autoregressive(NAR) generative model.
Our experiments demonstrate that StraIT significantly improves NAR generation and out-performs existing DMs and AR methods.
arXiv Detail & Related papers (2023-03-01T18:59:33Z) - GLFF: Global and Local Feature Fusion for AI-synthesized Image Detection [29.118321046339656]
We propose a framework to learn rich and discriminative representations by combining multi-scale global features from the whole image with refined local features from informative patches for AI synthesized image detection.
GLFF fuses information from two branches: the global branch to extract multi-scale semantic features and the local branch to select informative patches for detailed local artifacts extraction.
arXiv Detail & Related papers (2022-11-16T02:03:20Z) - IMAGINE: Image Synthesis by Image-Guided Model Inversion [79.4691654458141]
We introduce an inversion based method, denoted as IMAge-Guided model INvErsion (IMAGINE), to generate high-quality and diverse images.
We leverage the knowledge of image semantics from a pre-trained classifier to achieve plausible generations.
IMAGINE enables the synthesis procedure to simultaneously 1) enforce semantic specificity constraints during the synthesis, 2) produce realistic images without generator training, and 3) give users intuitive control over the generation process.
arXiv Detail & Related papers (2021-04-13T02:00:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.