Detecting the Undetectable: Combining Kolmogorov-Arnold Networks and MLP for AI-Generated Image Detection
- URL: http://arxiv.org/abs/2408.09371v1
- Date: Sun, 18 Aug 2024 06:00:36 GMT
- Title: Detecting the Undetectable: Combining Kolmogorov-Arnold Networks and MLP for AI-Generated Image Detection
- Authors: Taharim Rahman Anon, Jakaria Islam Emon,
- Abstract summary: This paper presents a novel detection framework adept at robustly identifying images produced by cutting-edge generative AI models.
We propose a classification system that integrates semantic image embeddings with a traditional Multilayer Perceptron (MLP)
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As artificial intelligence progresses, the task of distinguishing between real and AI-generated images is increasingly complicated by sophisticated generative models. This paper presents a novel detection framework adept at robustly identifying images produced by cutting-edge generative AI models, such as DALL-E 3, MidJourney, and Stable Diffusion 3. We introduce a comprehensive dataset, tailored to include images from these advanced generators, which serves as the foundation for extensive evaluation. we propose a classification system that integrates semantic image embeddings with a traditional Multilayer Perceptron (MLP). This baseline system is designed to effectively differentiate between real and AI-generated images under various challenging conditions. Enhancing this approach, we introduce a hybrid architecture that combines Kolmogorov-Arnold Networks (KAN) with the MLP. This hybrid model leverages the adaptive, high-resolution feature transformation capabilities of KAN, enabling our system to capture and analyze complex patterns in AI-generated images that are typically overlooked by conventional models. In out-of-distribution testing, our proposed model consistently outperformed the standard MLP across three out of distribution test datasets, demonstrating superior performance and robustness in classifying real images from AI-generated images with impressive F1 scores.
Related papers
- A Sanity Check for AI-generated Image Detection [49.08585395873425]
We present a sanity check on whether the task of AI-generated image detection has been solved.
To quantify the generalization of existing methods, we evaluate 9 off-the-shelf AI-generated image detectors on Chameleon dataset.
We propose AIDE (AI-generated Image DEtector with Hybrid Features), which leverages multiple experts to simultaneously extract visual artifacts and noise patterns.
arXiv Detail & Related papers (2024-06-27T17:59:49Z) - Improving Interpretability and Robustness for the Detection of AI-Generated Images [6.116075037154215]
We analyze existing state-of-the-art AIGI detection methods based on frozen CLIP embeddings.
We show how to interpret them, shedding light on how images produced by various AI generators differ from real ones.
arXiv Detail & Related papers (2024-06-21T10:33:09Z) - DiffuSyn Bench: Evaluating Vision-Language Models on Real-World Complexities with Diffusion-Generated Synthetic Benchmarks [0.0]
This study assesses the ability of Large Vision-Language Models (LVLMs) to differentiate between AI-generated and human-generated images.
It introduces a new automated benchmark construction method for this evaluation.
arXiv Detail & Related papers (2024-06-06T19:50:33Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGID is a training-free and model-agnostic method for robust AI-generated image detection.
RIGID significantly outperforms existing trainingbased and training-free detectors.
arXiv Detail & Related papers (2024-05-30T14:49:54Z) - Large Multi-modality Model Assisted AI-Generated Image Quality Assessment [53.182136445844904]
We introduce a large Multi-modality model Assisted AI-Generated Image Quality Assessment (MA-AGIQA) model.
It uses semantically informed guidance to sense semantic information and extract semantic vectors through carefully designed text prompts.
It achieves state-of-the-art performance, and demonstrates its superior generalization capabilities on assessing the quality of AI-generated images.
arXiv Detail & Related papers (2024-04-27T02:40:36Z) - ASAP: Interpretable Analysis and Summarization of AI-generated Image Patterns at Scale [20.12991230544801]
Generative image models have emerged as a promising technology to produce realistic images.
There is growing demand to empower users to effectively discern and comprehend patterns of AI-generated images.
We develop ASAP, an interactive visualization system that automatically extracts distinct patterns of AI-generated images.
arXiv Detail & Related papers (2024-04-03T18:20:41Z) - Kandinsky: an Improved Text-to-Image Synthesis with Image Prior and
Latent Diffusion [50.59261592343479]
We present Kandinsky1, a novel exploration of latent diffusion architecture.
The proposed model is trained separately to map text embeddings to image embeddings of CLIP.
We also deployed a user-friendly demo system that supports diverse generative modes such as text-to-image generation, image fusion, text and image fusion, image variations generation, and text-guided inpainting/outpainting.
arXiv Detail & Related papers (2023-10-05T12:29:41Z) - StraIT: Non-autoregressive Generation with Stratified Image Transformer [63.158996766036736]
Stratified Image Transformer(StraIT) is a pure non-autoregressive(NAR) generative model.
Our experiments demonstrate that StraIT significantly improves NAR generation and out-performs existing DMs and AR methods.
arXiv Detail & Related papers (2023-03-01T18:59:33Z) - GLFF: Global and Local Feature Fusion for AI-synthesized Image Detection [29.118321046339656]
We propose a framework to learn rich and discriminative representations by combining multi-scale global features from the whole image with refined local features from informative patches for AI synthesized image detection.
GLFF fuses information from two branches: the global branch to extract multi-scale semantic features and the local branch to select informative patches for detailed local artifacts extraction.
arXiv Detail & Related papers (2022-11-16T02:03:20Z) - IMAGINE: Image Synthesis by Image-Guided Model Inversion [79.4691654458141]
We introduce an inversion based method, denoted as IMAge-Guided model INvErsion (IMAGINE), to generate high-quality and diverse images.
We leverage the knowledge of image semantics from a pre-trained classifier to achieve plausible generations.
IMAGINE enables the synthesis procedure to simultaneously 1) enforce semantic specificity constraints during the synthesis, 2) produce realistic images without generator training, and 3) give users intuitive control over the generation process.
arXiv Detail & Related papers (2021-04-13T02:00:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.