VERITAS: Verification and Explanation of Realness in Images for Transparency in AI Systems
- URL: http://arxiv.org/abs/2507.05146v1
- Date: Mon, 07 Jul 2025 15:57:05 GMT
- Title: VERITAS: Verification and Explanation of Realness in Images for Transparency in AI Systems
- Authors: Aadi Srivastava, Vignesh Natarajkumar, Utkarsh Bheemanaboyna, Devisree Akashapu, Nagraj Gaonkar, Archit Joshi,
- Abstract summary: We present VERITAS, a comprehensive framework that accurately detects whether a small (32x32) image is AI-generated.<n>VERITAS produces human-readable explanations that describe key artifacts in synthetic images.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The widespread and rapid adoption of AI-generated content, created by models such as Generative Adversarial Networks (GANs) and Diffusion Models, has revolutionized the digital media landscape by allowing efficient and creative content generation. However, these models also blur the difference between real images and AI-generated synthetic images, raising concerns regarding content authenticity and integrity. While many existing solutions to detect fake images focus solely on classification and higher-resolution images, they often lack transparency in their decision-making, making it difficult for users to understand why an image is classified as fake. In this paper, we present VERITAS, a comprehensive framework that not only accurately detects whether a small (32x32) image is AI-generated but also explains why it was classified that way through artifact localization and semantic reasoning. VERITAS produces human-readable explanations that describe key artifacts in synthetic images. We show that this architecture offers clear explanations of the basis of zero-shot synthetic image detection tasks. Code and relevant prompts can be found at https://github.com/V-i-g-n-e-s-h-N/VERITAS .
Related papers
- FakeScope: Large Multimodal Expert Model for Transparent AI-Generated Image Forensics [66.14786900470158]
We propose FakeScope, an expert multimodal model (LMM) tailored for AI-generated image forensics.<n>FakeScope identifies AI-synthetic images with high accuracy and provides rich, interpretable, and query-driven forensic insights.<n>FakeScope achieves state-of-the-art performance in both closed-ended and open-ended forensic scenarios.
arXiv Detail & Related papers (2025-03-31T16:12:48Z) - DejAIvu: Identifying and Explaining AI Art on the Web in Real-Time with Saliency Maps [0.0]
We introduce DejAIvu, a Chrome Web extension that combines real-time AI-generated image detection with saliency-based explainability.<n>Our approach integrates efficient in-browser inference, gradient-based saliency analysis, and a seamless user experience, ensuring that AI detection is both transparent and interpretable.
arXiv Detail & Related papers (2025-02-12T22:24:49Z) - SAGI: Semantically Aligned and Uncertainty Guided AI Image Inpainting [11.216906046169683]
SAGI-D is the largest and most diverse dataset of AI-generated inpaintings.<n>Our experiments show that semantic alignment significantly improves image quality and aesthetics.<n>Using SAGI-D for training several image forensic approaches increases in-domain detection performance on average by 37.4%.
arXiv Detail & Related papers (2025-02-10T15:56:28Z) - Zero-Shot Detection of AI-Generated Images [54.01282123570917]
We propose a zero-shot entropy-based detector (ZED) to detect AI-generated images.
Inspired by recent works on machine-generated text detection, our idea is to measure how surprising the image under analysis is compared to a model of real images.
ZED achieves an average improvement of more than 3% over the SoTA in terms of accuracy.
arXiv Detail & Related papers (2024-09-24T08:46:13Z) - Solutions to Deepfakes: Can Camera Hardware, Cryptography, and Deep Learning Verify Real Images? [51.3344199560726]
It is imperative to establish methods that can separate real data from synthetic data with high confidence.
This document aims to: present known strategies in detection and cryptography that can be employed to verify which images are real.
arXiv Detail & Related papers (2024-07-04T22:01:21Z) - A Sanity Check for AI-generated Image Detection [49.08585395873425]
We propose AIDE (AI-generated Image DEtector with Hybrid Features) to detect AI-generated images.<n>AIDE achieves +3.5% and +4.6% improvements to state-of-the-art methods.
arXiv Detail & Related papers (2024-06-27T17:59:49Z) - Development of a Dual-Input Neural Model for Detecting AI-Generated Imagery [0.0]
It is important to develop tools that are able to detect AI-generated images.
This paper proposes a dual-branch neural network architecture that takes both images and their Fourier frequency decomposition as inputs.
Our proposed model achieves an accuracy of 94% on the CIFAKE dataset, which significantly outperforms classic ML methods and CNNs.
arXiv Detail & Related papers (2024-06-19T16:42:04Z) - ASAP: Interpretable Analysis and Summarization of AI-generated Image Patterns at Scale [20.12991230544801]
Generative image models have emerged as a promising technology to produce realistic images.
There is growing demand to empower users to effectively discern and comprehend patterns of AI-generated images.
We develop ASAP, an interactive visualization system that automatically extracts distinct patterns of AI-generated images.
arXiv Detail & Related papers (2024-04-03T18:20:41Z) - PatchCraft: Exploring Texture Patch for Efficient AI-generated Image
Detection [39.820699370876916]
We propose a novel AI-generated image detector capable of identifying fake images created by a wide range of generative models.
A novel Smash&Reconstruction preprocessing is proposed to erase the global semantic information and enhance texture patches.
Our approach outperforms state-of-the-art baselines by a significant margin.
arXiv Detail & Related papers (2023-11-21T07:12:40Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
Recent advancements in diffusion models have enabled the generation of realistic deepfakes from textual prompts in natural language.
We pioneer a systematic study on deepfake detection generated by state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-04-02T10:25:09Z) - A Shared Representation for Photorealistic Driving Simulators [83.5985178314263]
We propose to improve the quality of generated images by rethinking the discriminator architecture.
The focus is on the class of problems where images are generated given semantic inputs, such as scene segmentation maps or human body poses.
We aim to learn a shared latent representation that encodes enough information to jointly do semantic segmentation, content reconstruction, along with a coarse-to-fine grained adversarial reasoning.
arXiv Detail & Related papers (2021-12-09T18:59:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.