Deep Learning-Based Weather-Related Power Outage Prediction with Socio-Economic and Power Infrastructure Data
- URL: http://arxiv.org/abs/2404.03115v1
- Date: Wed, 3 Apr 2024 23:38:31 GMT
- Title: Deep Learning-Based Weather-Related Power Outage Prediction with Socio-Economic and Power Infrastructure Data
- Authors: Xuesong Wang, Nina Fatehi, Caisheng Wang, Masoud H. Nazari,
- Abstract summary: This paper presents a deep learning-based approach for hourly power outage probability prediction within census tracts encompassing a utility company's service territory.
Two distinct deep learning models, conditional Multi-Layer Perceptron (MLP) and unconditional, were developed to forecast power outage probabilities.
Our experimental results underscore the significance of socio-economic factors in enhancing the accuracy of power outage predictions at the census tract level.
- Score: 4.4121133971424165
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a deep learning-based approach for hourly power outage probability prediction within census tracts encompassing a utility company's service territory. Two distinct deep learning models, conditional Multi-Layer Perceptron (MLP) and unconditional MLP, were developed to forecast power outage probabilities, leveraging a rich array of input features gathered from publicly available sources including weather data, weather station locations, power infrastructure maps, socio-economic and demographic statistics, and power outage records. Given a one-hour-ahead weather forecast, the models predict the power outage probability for each census tract, taking into account both the weather prediction and the location's characteristics. The deep learning models employed different loss functions to optimize prediction performance. Our experimental results underscore the significance of socio-economic factors in enhancing the accuracy of power outage predictions at the census tract level.
Related papers
- Aardvark weather: end-to-end data-driven weather forecasting [30.219727555662267]
Aardvark Weather is an end-to-end data-driven weather prediction system.
It ingests raw observations and outputs global gridded forecasts and local station forecasts.
It can be optimised end-to-end to maximise performance over quantities of interest.
arXiv Detail & Related papers (2024-03-30T16:41:24Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models [13.331224394143117]
Uncertainty quantification is crucial to decision-making.
dominant approach to representing uncertainty in weather forecasting is to generate an ensemble of forecasts.
We propose to amortize the computational cost by emulating these forecasts with deep generative diffusion models learned from historical data.
arXiv Detail & Related papers (2023-06-24T22:00:06Z) - Probabilistic forecasts of wind power generation in regions with complex
topography using deep learning methods: An Arctic case [3.3788638227700734]
This work presents concepts and approaches concerning probabilistic forecasts with deep learning.
Deep learning models are used to make probabilistic forecasts of day-ahead power generation from a wind power plant located in Northern Norway.
arXiv Detail & Related papers (2022-03-10T15:52:11Z) - Deep learning-based multi-output quantile forecasting of PV generation [34.51430520593065]
This paper develops probabilistic PV forecasters by taking advantage of recent breakthroughs in deep learning.
It tailored forecasting tool, named encoder-decoder, is implemented to compute intraday multi-output PV quantiles forecasts.
The models are trained using quantile regression, a non-parametric approach.
arXiv Detail & Related papers (2021-06-02T16:28:10Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.