Uncertainty in Language Models: Assessment through Rank-Calibration
- URL: http://arxiv.org/abs/2404.03163v2
- Date: Sat, 14 Sep 2024 02:42:04 GMT
- Title: Uncertainty in Language Models: Assessment through Rank-Calibration
- Authors: Xinmeng Huang, Shuo Li, Mengxin Yu, Matteo Sesia, Hamed Hassani, Insup Lee, Osbert Bastani, Edgar Dobriban,
- Abstract summary: Language Models (LMs) have shown promising performance in natural language generation.
It is crucial to correctly quantify their uncertainty in responding to given inputs.
We develop a novel and practical framework, termed $Rank$-$Calibration$, to assess uncertainty and confidence measures for LMs.
- Score: 65.10149293133846
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language Models (LMs) have shown promising performance in natural language generation. However, as LMs often generate incorrect or hallucinated responses, it is crucial to correctly quantify their uncertainty in responding to given inputs. In addition to verbalized confidence elicited via prompting, many uncertainty measures ($e.g.$, semantic entropy and affinity-graph-based measures) have been proposed. However, these measures can differ greatly, and it is unclear how to compare them, partly because they take values over different ranges ($e.g.$, $[0,\infty)$ or $[0,1]$). In this work, we address this issue by developing a novel and practical framework, termed $Rank$-$Calibration$, to assess uncertainty and confidence measures for LMs. Our key tenet is that higher uncertainty (or lower confidence) should imply lower generation quality, on average. Rank-calibration quantifies deviations from this ideal relationship in a principled manner, without requiring ad hoc binary thresholding of the correctness score ($e.g.$, ROUGE or METEOR). The broad applicability and the granular interpretability of our methods are demonstrated empirically.
Related papers
- Improving Uncertainty Quantification in Large Language Models via Semantic Embeddings [11.33157177182775]
Accurately quantifying uncertainty in large language models (LLMs) is crucial for their reliable deployment.
Current state-of-the-art methods for measuring semantic uncertainty in LLMs rely on strict bidirectional entailment criteria.
We propose a novel approach that leverages semantic embeddings to achieve smoother and more robust estimation of semantic uncertainty.
arXiv Detail & Related papers (2024-10-30T04:41:46Z) - Uncertainty is Fragile: Manipulating Uncertainty in Large Language Models [79.76293901420146]
Large Language Models (LLMs) are employed across various high-stakes domains, where the reliability of their outputs is crucial.
Our research investigates the fragility of uncertainty estimation and explores potential attacks.
We demonstrate that an attacker can embed a backdoor in LLMs, which, when activated by a specific trigger in the input, manipulates the model's uncertainty without affecting the final output.
arXiv Detail & Related papers (2024-07-15T23:41:11Z) - Efficient Nearest Neighbor based Uncertainty Estimation for Natural Language Processing Tasks [26.336947440529713]
$k$-Nearest Neighbor Uncertainty Estimation ($k$NN-UE) is an uncertainty estimation method that uses the distances from the neighbors and label-existence ratio of neighbors.
Our experiments show that our proposed method outperforms the baselines or recent density-based methods in confidence calibration, selective prediction, and out-of-distribution detection.
arXiv Detail & Related papers (2024-07-02T10:33:31Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Kernel Language Entropy: Fine-grained Uncertainty Quantification for LLMs from Semantic Similarities [79.9629927171974]
Uncertainty in Large Language Models (LLMs) is crucial for applications where safety and reliability are important.
We propose Kernel Language Entropy (KLE), a novel method for uncertainty estimation in white- and black-box LLMs.
arXiv Detail & Related papers (2024-05-30T12:42:05Z) - Semantic Density: Uncertainty Quantification for Large Language Models through Confidence Measurement in Semantic Space [14.715989394285238]
Existing Large Language Models (LLMs) do not have an inherent functionality to provide the users with an uncertainty/confidence metric for each response it generates.
A new framework is proposed in this paper to address these issues.
Semantic density extracts uncertainty/confidence information for each response from a probability distribution perspective in semantic space.
arXiv Detail & Related papers (2024-05-22T17:13:49Z) - Language Model Cascades: Token-level uncertainty and beyond [65.38515344964647]
Recent advances in language models (LMs) have led to significant improvements in quality on complex NLP tasks.
Cascading offers a simple strategy to achieve more favorable cost-quality tradeoffs.
We show that incorporating token-level uncertainty through learned post-hoc deferral rules can significantly outperform simple aggregation strategies.
arXiv Detail & Related papers (2024-04-15T21:02:48Z) - Efficient and Sharp Off-Policy Evaluation in Robust Markov Decision Processes [44.974100402600165]
We study the evaluation of a policy best-parametric and worst-case perturbations to a decision process (MDP)
We use transition observations from the original MDP, whether they are generated under the same or a different policy.
Our estimator is also estimated statistical inference using Wald confidence intervals.
arXiv Detail & Related papers (2024-03-29T18:11:49Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
We reformulate open-ended generation tasks into token-level prediction tasks.
We instruct an LLM to self-evaluate its answers.
We benchmark a range of scoring methods based on self-evaluation.
arXiv Detail & Related papers (2023-12-14T19:09:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.