論文の概要: Goldfish: An Efficient Federated Unlearning Framework
- arxiv url: http://arxiv.org/abs/2404.03180v2
- Date: Tue, 23 Apr 2024 11:09:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 18:46:42.556853
- Title: Goldfish: An Efficient Federated Unlearning Framework
- Title(参考訳): Goldfish: 効果的なフェデレーション・アンラーニングフレームワーク
- Authors: Houzhe Wang, Xiaojie Zhu, Chi Chen, Paulo Esteves-Veríssimo,
- Abstract要約: Goldfishは機械学習アルゴリズムのための新しいフレームワークだ。
基本モデル、損失関数、最適化、拡張の4つのモジュールで構成されている。
既存の機械学習アルゴリズムの妥当性の低い課題に対処するため,新しい損失関数を提案する。
- 参考スコア(独自算出の注目度): 3.956103498302838
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With recent legislation on the right to be forgotten, machine unlearning has emerged as a crucial research area. It facilitates the removal of a user's data from federated trained machine learning models without the necessity for retraining from scratch. However, current machine unlearning algorithms are confronted with challenges of efficiency and validity. To address the above issues, we propose a new framework, named Goldfish. It comprises four modules: basic model, loss function, optimization, and extension. To address the challenge of low validity in existing machine unlearning algorithms, we propose a novel loss function. It takes into account the loss arising from the discrepancy between predictions and actual labels in the remaining dataset. Simultaneously, it takes into consideration the bias of predicted results on the removed dataset. Moreover, it accounts for the confidence level of predicted results. Additionally, to enhance efficiency, we adopt knowledge a distillation technique in the basic model and introduce an optimization module that encompasses the early termination mechanism guided by empirical risk and the data partition mechanism. Furthermore, to bolster the robustness of the aggregated model, we propose an extension module that incorporates a mechanism using adaptive distillation temperature to address the heterogeneity of user local data and a mechanism using adaptive weight to handle the variety in the quality of uploaded models. Finally, we conduct comprehensive experiments to illustrate the effectiveness of proposed approach.
- Abstract(参考訳): 忘れられる権利に関する最近の法律により、機械学習は重要な研究領域として浮上してきた。
これにより、スクラッチから再トレーニングする必要なく、フェデレーション付きトレーニングされた機械学習モデルからユーザのデータを削除することができる。
しかし、現在の機械学習アルゴリズムは効率と妥当性の課題に直面している。
上記の問題に対処するため、Goldfishという新しいフレームワークを提案する。
基本モデル、損失関数、最適化、拡張の4つのモジュールで構成されている。
既存の機械学習アルゴリズムの妥当性の低い課題に対処するため,新しい損失関数を提案する。
残りのデータセットの予測と実際のラベルの相違から生じる損失を考慮に入れます。
同時に、削除されたデータセットの予測結果のバイアスを考慮する。
さらに、予測結果の信頼度も考慮する。
さらに, 効率を向上させるため, 基本モデルにおける蒸留手法の知識を取り入れ, 経験的リスクとデータ分割機構によって導かれる早期終了機構を含む最適化モジュールを導入する。
さらに, 集約モデルのロバスト性を高めるために, ユーザの局所データの不均一性に対処するための適応蒸留温度を用いた機構と, アップロードしたモデルの品質の多様性を扱うための適応重みを用いた機構を組み込んだ拡張モジュールを提案する。
最後に,提案手法の有効性を示す総合的な実験を行った。
関連論文リスト
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
機械学習 -- 事前訓練された機械学習モデルで、小さな"ターゲットセット"トレーニングデータを効率的に削除する -- は、最近関心を集めている。
最近の研究では、機械学習技術はこのような困難な環境では耐えられないことが示されている。
論文 参考訳(メタデータ) (2024-10-30T17:20:10Z) - Silver Linings in the Shadows: Harnessing Membership Inference for Machine Unlearning [7.557226714828334]
ニューラルネットワークから特定のデータサンプルの影響を除去する新しい学習機構を提案する。
この目的を達成するために、我々は、ターゲットモデルの重みやアクティベーション値からプライバシーに敏感な情報を排除するための、新しい損失関数を構築した。
本研究の結果は,未学習の有効性とレイテンシ,および主課題の忠実度の観点から,我々のアプローチの優れた性能を示すものである。
論文 参考訳(メタデータ) (2024-07-01T00:20:26Z) - Partially Blinded Unlearning: Class Unlearning for Deep Networks a Bayesian Perspective [4.31734012105466]
マシン・アンラーニング(英: Machine Unlearning)とは、特定のデータセットやクラスに指定された情報を事前訓練されたモデルから選択的に破棄するプロセスである。
本研究では,事前学習した分類ネットワークから,特定の種類のデータに関連付けられた情報の目的的除去に適した手法を提案する。
本手法は,従来の最先端の未学習手法を超越し,優れた有効性を示す。
論文 参考訳(メタデータ) (2024-03-24T17:33:22Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Loss-Free Machine Unlearning [51.34904967046097]
我々は、再学習とラベルなしの両方の機械学習アプローチを提案する。
Retraining-freeアプローチは、損失から派生したFisher情報を利用することが多く、利用できないラベル付きデータを必要とする。
本稿では,モデル出力のl2ノルムの勾配に対して,フィッシャー情報行列の対角線を近似感度に置き換えるSelective Synaptic Dampeningアルゴリズムの拡張を提案する。
論文 参考訳(メタデータ) (2024-02-29T16:15:34Z) - Dataset Condensation Driven Machine Unlearning [0.0]
データ規制要件とプライバシ保護機械学習の現在のトレンドは、機械学習の重要性を強調している。
我々は,機械学習のプライバシ,ユーティリティ,効率のバランスをとるために,新しいデータセット凝縮手法と革新的なアンラーニング手法を提案する。
本稿では,機械のアンラーニングを計測するための新しい効果的なアプローチを提案し,その適用方法として,メンバシップ推論とモデル逆転攻撃の防御を提案する。
論文 参考訳(メタデータ) (2024-01-31T21:48:25Z) - Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
ラベルなしデータセットを、効率的な自己教師付き学習(SSL)のための小さな合成サンプル群に蒸留する新しい問題を提案する。
両レベル最適化におけるSSL目標に対する合成サンプルの勾配は、データ拡張やマスキングから生じるランダム性から、テキストバイアスを受けていることを最初に証明する。
転送学習を含む様々な応用における本手法の有効性を実証的に検証する。
論文 参考訳(メタデータ) (2023-10-10T10:48:52Z) - Task-Aware Machine Unlearning and Its Application in Load Forecasting [4.00606516946677]
本稿では、すでに訓練済みの予測器に対するデータセットの一部の影響を除去するために特別に設計された機械学習の概念を紹介する。
局所モデルパラメータ変化の感度を影響関数とサンプル再重み付けを用いて評価することにより,性能認識アルゴリズムを提案する。
リアルな負荷データセットを用いて,線形,CNN,Mixerベースの負荷予測器上で,未学習アルゴリズムを検証した。
論文 参考訳(メタデータ) (2023-08-28T08:50:12Z) - LegoNet: A Fast and Exact Unlearning Architecture [59.49058450583149]
機械学習は、トレーニングされたモデルから削除された要求に対する特定のトレーニングサンプルの影響を削除することを目的としている。
固定エンコーダ+複数アダプタのフレームワークを採用した新しいネットワークである textitLegoNet を提案する。
我々は、LegoNetが許容できる性能を維持しつつ、高速かつ正確な未学習を実現し、未学習のベースラインを総合的に上回っていることを示す。
論文 参考訳(メタデータ) (2022-10-28T09:53:05Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。