論文の概要: Multi-task learning via robust regularized clustering with non-convex group penalties
- arxiv url: http://arxiv.org/abs/2404.03250v2
- Date: Mon, 27 May 2024 11:37:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 06:07:03.647765
- Title: Multi-task learning via robust regularized clustering with non-convex group penalties
- Title(参考訳): 非凸群ペナルティを用いたロバスト正規化クラスタリングによるマルチタスク学習
- Authors: Akira Okazaki, Shuichi Kawano,
- Abstract要約: マルチタスク学習(MTL)は、関連するタスク間で共通情報を共有することにより、推定性能を向上させることを目的としている。
この仮定に基づく既存のMTLメソッドは、しばしば外れたタスクを無視する。
MTLRRC(MultiTask Regularized Clustering)と呼ばれる新しいMTL手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-task learning (MTL) aims to improve estimation and prediction performance by sharing common information among related tasks. One natural assumption in MTL is that tasks are classified into clusters based on their characteristics. However, existing MTL methods based on this assumption often ignore outlier tasks that have large task-specific components or no relation to other tasks. To address this issue, we propose a novel MTL method called Multi-Task Learning via Robust Regularized Clustering (MTLRRC). MTLRRC incorporates robust regularization terms inspired by robust convex clustering, which is further extended to handle non-convex and group-sparse penalties. The extension allows MTLRRC to simultaneously perform robust task clustering and outlier task detection. The connection between the extended robust clustering and the multivariate M-estimator is also established. This provides an interpretation of the robustness of MTLRRC against outlier tasks. An efficient algorithm based on a modified alternating direction method of multipliers is developed for the estimation of the parameters. The effectiveness of MTLRRC is demonstrated through simulation studies and application to real data.
- Abstract(参考訳): マルチタスク学習(MTL)は、関連するタスク間で共通情報を共有することにより、予測と予測性能を向上させることを目的としている。
MTLの自然な仮定の一つは、タスクはその特性に基づいてクラスタに分類されるということである。
しかし、この仮定に基づく既存のMTLメソッドは、大きなタスク固有のコンポーネントや他のタスクとは無関係なタスクを無視することが多い。
本稿では,ロバスト正規化クラスタリング(MTLRRC)を用いたマルチタスク学習手法を提案する。
MTLRRCはロバストな凸クラスタリングにインスパイアされたロバストな正則化項を取り入れており、非凸およびグループスパースなペナルティを扱うためにさらに拡張されている。
この拡張により、MTLRRCはロバストなタスククラスタリングとアウトリーなタスク検出を同時に行うことができる。
拡張ロバストクラスタリングと多変量M-推定器の接続も確立した。
このことは、MTLRRCが外れたタスクに対して頑健であることの解釈を提供する。
パラメータ推定のための乗算器の修正交互方向法に基づく効率的なアルゴリズムを開発した。
MTLRRCの有効性はシミュレーション研究と実データへの適用を通して実証される。
関連論文リスト
- Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
マルチタスク学習(MTL)は、タスク間の共有知識を活用し、一般化とパフォーマンスを改善するために設計された強力な機械学習パラダイムである。
本稿では,タスククラスタリングと特徴変換の交点におけるMTL手法を提案する。
両段階において、鍵となる側面は減った目標と特徴の解釈可能性を維持することである。
論文 参考訳(メタデータ) (2024-06-12T08:30:16Z) - Multitask Learning Can Improve Worst-Group Outcomes [76.92646345152788]
マルチタスク学習(MTL)は、そのような広く使われている技法の一つである。
我々は,共同マルチタスク表現空間を正規化することにより,標準MTLを変更することを提案する。
正規化MTLアプローチは,平均群と最低群の両方でJTTを上回っていることがわかった。
論文 参考訳(メタデータ) (2023-12-05T21:38:24Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML)は、複数の事前学習モデルを活用することで、独自のトレーニングデータを必要とせずに、新しいタスクを効率的に学習することを目的としている。
TDS(Task-Distribution Shift)とTDC(Task-Distribution Corruption)の2つの大きな課題を初めて明らかにした。
論文 参考訳(メタデータ) (2023-11-23T15:46:54Z) - Low-Rank Multitask Learning based on Tensorized SVMs and LSSVMs [65.42104819071444]
マルチタスク学習(MTL)はタスク関連性を活用して性能を向上させる。
タスクインデックスに対応する各モードを持つ高次テンソルを用いて、複数のインデックスが参照するタスクを自然に表現する。
テンソル化サポートベクターマシン(SVM)と最小2乗サポートベクターマシン(LSSVM)を併用した低ランクMTL手法の汎用フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-30T14:28:26Z) - Mitigating Task Interference in Multi-Task Learning via Explicit Task
Routing with Non-Learnable Primitives [19.90788777476128]
マルチタスク学習(MTL)は、タスク間の共有情報を活用することで、複数のタスクを達成するための単一のモデルを学ぶことを目指している。
既存のMLLモデルはタスク間の負の干渉に悩まされていることが知られている。
本研究では,非学習可能なプリミティブと明示的なタスクルーティングの相乗的組み合わせによるタスク干渉を軽減するためのETR-NLPを提案する。
論文 参考訳(メタデータ) (2023-08-03T22:34:16Z) - When Multi-Task Learning Meets Partial Supervision: A Computer Vision
Review [6.789370732159176]
マルチタスク学習(MTL)は,相互関係を利用して複数のタスクを同時に学習することを目的としている。
このレビューは、これらの課題に対処するために、異なる部分的な監視設定の下でMTLをどのように活用するかに焦点を当てる。
論文 参考訳(メタデータ) (2023-07-25T20:08:41Z) - Multi-Task Learning Regression via Convex Clustering [0.0]
本稿では,タスクのクラスタ中心を表すセントロイドパラメータを用いたMTL手法を提案する。
モンテカルロシミュレーションによる提案手法の有効性と実データへの適用について述べる。
論文 参考訳(メタデータ) (2023-04-26T07:25:21Z) - Semisoft Task Clustering for Multi-Task Learning [2.806911268410107]
マルチタスク学習(MTL)は、複数の関連する予測タスクの性能を向上させることを目的としている。
そこで本研究では,タスククラスタリング構造を半ソフトなタスククラスタリング手法として提案する。
合成および実世界のデータセットに基づく実験結果は,提案手法の有効性と有効性を検証する。
論文 参考訳(メタデータ) (2022-11-28T07:23:56Z) - Semi-supervised Multi-task Learning for Semantics and Depth [88.77716991603252]
MTL(Multi-Task Learning)は、関連するタスク間で表現を共有することで、モデル一般化を強化することを目的としている。
そこで本研究では,異なるデータセットから利用可能な監視信号を活用するために,半教師付きマルチタスク学習(MTL)手法を提案する。
本稿では,データセット間の整合性の問題を軽減するために,様々なアライメントの定式化を施したドメイン認識識別器構造を提案する。
論文 参考訳(メタデータ) (2021-10-14T07:43:39Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。