論文の概要: Multi-Task Learning Regression via Convex Clustering
- arxiv url: http://arxiv.org/abs/2304.13342v1
- Date: Wed, 26 Apr 2023 07:25:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-27 15:19:08.801728
- Title: Multi-Task Learning Regression via Convex Clustering
- Title(参考訳): 凸クラスタリングによるマルチタスク学習回帰
- Authors: Akira Okazaki, Shuichi Kawano
- Abstract要約: 本稿では,タスクのクラスタ中心を表すセントロイドパラメータを用いたMTL手法を提案する。
モンテカルロシミュレーションによる提案手法の有効性と実データへの適用について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-task learning (MTL) is a methodology that aims to improve the general
performance of estimation and prediction by sharing common information among
related tasks. In the MTL, there are several assumptions for the relationships
and methods to incorporate them. One of the natural assumptions in the
practical situation is that tasks are classified into some clusters with their
characteristics. For this assumption, the group fused regularization approach
performs clustering of the tasks by shrinking the difference among tasks. This
enables us to transfer common information within the same cluster. However,
this approach also transfers the information between different clusters, which
worsens the estimation and prediction. To overcome this problem, we propose an
MTL method with a centroid parameter representing a cluster center of the task.
Because this model separates parameters into the parameters for regression and
the parameters for clustering, we can improve estimation and prediction
accuracy for regression coefficient vectors. We show the effectiveness of the
proposed method through Monte Carlo simulations and applications to real data.
- Abstract(参考訳): マルチタスク学習(MTL)は,タスク間の共通情報を共有することにより,予測と予測の一般的な性能を向上させる手法である。
MTLでは、それらを組み込む関係や方法にはいくつかの仮定がある。
現実的状況における自然な仮定の1つは、タスクがその特性を持ついくつかのクラスタに分類されるということである。
この仮定のために、群融合正規化手法はタスク間の差を小さくすることでタスクのクラスタリングを行う。
これにより、同じクラスタ内で共通の情報を転送することができます。
しかし、このアプローチは異なるクラスタ間で情報を転送するので、推定と予測が悪化する。
この問題を解決するために,タスクのクラスタ中心を表すセントロイドパラメータを用いたMTL手法を提案する。
このモデルではパラメータを回帰パラメータとクラスタリングパラメータに分離するため,回帰係数ベクトルの推定と予測精度を向上させることができる。
モンテカルロシミュレーションによる提案手法の有効性と実データへの適用について述べる。
関連論文リスト
- Time Series Clustering with General State Space Models via Stochastic Variational Inference [0.0]
一般状態空間モデル(MSSM)の混合を用いたモデルベース時系列クラスタリングの新しい手法を提案する。
提案手法の利点は,特定の時系列に適した時系列モデルの利用を可能にすることである。
シミュレーションデータセットの実験から,提案手法はクラスタリング,パラメータ推定,クラスタ数推定に有効であることが示された。
論文 参考訳(メタデータ) (2024-06-29T12:48:53Z) - Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
マルチタスク学習(MTL)は、タスク間の共有知識を活用し、一般化とパフォーマンスを改善するために設計された強力な機械学習パラダイムである。
本稿では,タスククラスタリングと特徴変換の交点におけるMTL手法を提案する。
両段階において、鍵となる側面は減った目標と特徴の解釈可能性を維持することである。
論文 参考訳(メタデータ) (2024-06-12T08:30:16Z) - Task Groupings Regularization: Data-Free Meta-Learning with Heterogeneous Pre-trained Models [83.02797560769285]
Data-Free Meta-Learning (DFML)は、トレーニング済みモデルのコレクションから、元のデータにアクセスせずに知識を抽出することを目的としている。
現在の手法は、事前訓練されたモデル間の不均一性を見落とし、タスクの衝突による性能低下につながることが多い。
課題群規則化(Task Groupings Regularization)は、矛盾するタスクをグループ化し整合させることにより、モデルの不均一性から恩恵を受ける新しいアプローチである。
論文 参考訳(メタデータ) (2024-05-26T13:11:55Z) - Multi-task learning via robust regularized clustering with non-convex group penalties [0.0]
マルチタスク学習(MTL)は、関連するタスク間で共通情報を共有することにより、推定性能を向上させることを目的としている。
この仮定に基づく既存のMTLメソッドは、しばしば外れたタスクを無視する。
MTLRRC(MultiTask Regularized Clustering)と呼ばれる新しいMTL手法を提案する。
論文 参考訳(メタデータ) (2024-04-04T07:09:43Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
論文 参考訳(メタデータ) (2023-08-29T15:01:01Z) - A parallelizable model-based approach for marginal and multivariate
clustering [0.0]
本稿では,モデルに基づくクラスタリングの頑健さを生かしたクラスタリング手法を提案する。
我々は、各マージンごとに異なる数のクラスタを持つことができる有限混合モデルを指定することで、この問題に対処する。
提案手法は、完全な(結合した)モデルベースのクラスタリング手法よりも、中程度から高次元の処理に適するだけでなく、計算的にも魅力的である。
論文 参考訳(メタデータ) (2022-12-07T23:54:41Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
異種環境における分散学習のためのコミュニケーション効率化手法のファミリーを提案する。
ユーザによるローカル計算に基づくワンショットアプローチと、サーバにおけるクラスタリングベースのアグリゲーションステップは、強力な学習保証を提供する。
厳密な凸問題に対しては,ユーザ毎のデータ点数がしきい値を超える限り,提案手法はサンプルサイズの観点から順序最適平均二乗誤差率を達成する。
論文 参考訳(メタデータ) (2022-09-22T09:04:10Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Cluster-Specific Predictions with Multi-Task Gaussian Processes [4.368185344922342]
マルチタスク学習、クラスタリング、予測を扱うために、ガウス過程(GP)を含むモデルを導入する。
このモデルは、マルチタスクGPと一般的な平均プロセスの混合としてインスタンス化される。
MagmaClustと呼ばれるアルゴリズムは、Rパッケージとして公開されている。
論文 参考訳(メタデータ) (2020-11-16T11:08:59Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。