論文の概要: SiloFuse: Cross-silo Synthetic Data Generation with Latent Tabular Diffusion Models
- arxiv url: http://arxiv.org/abs/2404.03299v1
- Date: Thu, 4 Apr 2024 08:48:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 15:24:04.192787
- Title: SiloFuse: Cross-silo Synthetic Data Generation with Latent Tabular Diffusion Models
- Title(参考訳): SiloFuse: ラテントタブラル拡散モデルを用いたクロスサイロ合成データ生成
- Authors: Aditya Shankar, Hans Brouwer, Rihan Hai, Lydia Chen,
- Abstract要約: クロスサイロデータから高品質な合成を行うための新しい生成フレームワークであるSiloFuseを紹介する。
The impossibility of data reconstruction for vertically partitioned synthesis and Quantify privacy risk。
SiloFuseはGANよりも43.8ポイント、29.8ポイント高い。
- 参考スコア(独自算出の注目度): 2.112421773185401
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synthetic tabular data is crucial for sharing and augmenting data across silos, especially for enterprises with proprietary data. However, existing synthesizers are designed for centrally stored data. Hence, they struggle with real-world scenarios where features are distributed across multiple silos, necessitating on-premise data storage. We introduce SiloFuse, a novel generative framework for high-quality synthesis from cross-silo tabular data. To ensure privacy, SiloFuse utilizes a distributed latent tabular diffusion architecture. Through autoencoders, latent representations are learned for each client's features, masking their actual values. We employ stacked distributed training to improve communication efficiency, reducing the number of rounds to a single step. Under SiloFuse, we prove the impossibility of data reconstruction for vertically partitioned synthesis and quantify privacy risks through three attacks using our benchmark framework. Experimental results on nine datasets showcase SiloFuse's competence against centralized diffusion-based synthesizers. Notably, SiloFuse achieves 43.8 and 29.8 higher percentage points over GANs in resemblance and utility. Experiments on communication show stacked training's fixed cost compared to the growing costs of end-to-end training as the number of training iterations increases. Additionally, SiloFuse proves robust to feature permutations and varying numbers of clients.
- Abstract(参考訳): 合成表データはサイロ全体、特にプロプライエタリなデータを持つ企業におけるデータの共有と拡張に不可欠である。
しかし、既存のシンセサイザーは中央に保存されたデータのために設計されている。
そのため、複数のサイロに分散して、オンプレミスのデータストレージを必要とする、現実世界のシナリオに苦労する。
クロスサイロ表データから高品質な合成を行うための新しい生成フレームワークであるSiloFuseを紹介する。
プライバシを確保するため、SiloFuseは分散遅延表分散アーキテクチャを使用している。
オートエンコーダを通じて、各クライアントの特徴について潜在表現が学習され、実際の値を隠蔽する。
スタック化された分散トレーニングを使用して通信効率を改善し、ラウンドの数を1ステップに減らします。
The impossibility of data reconstruction for vertically partitioned synthesis and Quantify privacy risk through three attack using our benchmark framework。
9つのデータセットの実験結果は、集中拡散に基づくシンセサイザーに対するSiroFuseの能力を示す。
特に、SiroFuseはGANよりも43.8ポイント、29.8ポイント高い。
コミュニケーションの実験では、トレーニングのイテレーション数が増加するにつれて、エンドツーエンドトレーニングのコストが増大するのに対して、トレーニングの固定コストが上昇した。
さらに、SiloFuseは、機能順応とさまざまな数のクライアントに対して堅牢であることを証明している。
関連論文リスト
- Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
大規模言語モデル(LLM)は多様なタスクに使われてきたが、特徴と対象変数の正確な相関は捉えていない。
そこで本研究では,LLMに基づく3つの重要な改良を加えて,実データの特徴クラス相関を正しく把握する手法を提案する。
実験の結果,本手法は下流タスクにおいて,20個のデータセット上で10個のSOTAベースラインを著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-10-29T04:14:32Z) - FLIGAN: Enhancing Federated Learning with Incomplete Data using GAN [1.5749416770494706]
Federated Learning (FL)は、ネットワークデバイス上での機械学習モデルの分散トレーニングのためのプライバシ保護メカニズムを提供する。
本稿では,FLにおけるデータ不完全性問題に対処する新しいアプローチであるFLIGANを提案する。
本手法はFLのプライバシ要件に則り,プロセス内の実際のデータを共有せずに合成データをフェデレートした方法で生成する。
論文 参考訳(メタデータ) (2024-03-25T16:49:38Z) - Quantifying and Mitigating Privacy Risks for Tabular Generative Models [13.153278585144355]
生成モデルからの合成データは、プライバシを保存するデータ共有ソリューションとして現れる。
本稿では,DP-TLDM,差分プライベートタブララプレント拡散モデルを提案する。
DP-TLDMは, 平均データ類似度35%, 下流タスク用ユーティリティ15%, データの識別性50%で, 合成品質の向上を図っている。
論文 参考訳(メタデータ) (2024-03-12T17:27:49Z) - FedTabDiff: Federated Learning of Diffusion Probabilistic Models for
Synthetic Mixed-Type Tabular Data Generation [5.824064631226058]
textitFederated Tabular Diffusion (FedTabDiff) を導入し、元のデータセットに一元的にアクセスすることなく、高忠実な混合型表型データを生成する。
FedTabDiffは、データプライバシとローカリティを尊重しながら、複数のエンティティが共同で生成モデルをトレーニングできるようにする分散学習方式を実現する。
実世界の金融および医療データセットに関する実験的評価は、高い忠実性、ユーティリティ、プライバシ、カバレッジを維持する合成データを生成するフレームワークの能力を実証している。
論文 参考訳(メタデータ) (2024-01-11T21:17:50Z) - TarGEN: Targeted Data Generation with Large Language Models [51.87504111286201]
TarGENは、高品質な合成データセットを生成するための、多段階のプロンプト戦略である。
我々は,LLMが不正確なラベル付きインスタンスを修正できるようにする自己補正法により,TarGENを増強する。
合成データセットを元のデータセットと比較した包括的な分析により、データセットの複雑さと多様性の類似または高いレベルが明らかになる。
論文 参考訳(メタデータ) (2023-10-27T03:32:17Z) - Generating tabular datasets under differential privacy [0.0]
ディープニューラルネットワークのトレーニングプロセスに差分プライバシー(DP)を導入する。
これにより、結果データの品質とプライバシの間にトレードオフが生じます。
我々は、注意機構を活用する新しいエンドツーエンドモデルを実装している。
論文 参考訳(メタデータ) (2023-08-28T16:35:43Z) - Dataset Condensation with Latent Space Knowledge Factorization and
Sharing [73.31614936678571]
与えられたデータセットの規則性を利用してデータセットの凝縮問題を解決する新しい手法を提案する。
データセットを元の入力空間に直接凝縮するのではなく、学習可能な一連のコードでデータセットの生成プロセスを仮定する。
提案手法は,様々なベンチマークデータセットに対して,有意なマージンで新しい最先端記録を達成できることを実験的に示す。
論文 参考訳(メタデータ) (2022-08-21T18:14:08Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - Federated Learning with GAN-based Data Synthesis for Non-IID Clients [8.304185807036783]
フェデレートラーニング(FL)は、最近、プライバシ保護のためのコラボレーティブラーニングパラダイムとして人気を博している。
我々は,合成データを共有することで,この非IID課題を解決するために,SDA-FL(Synthetic Data Aided Federated Learning)という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-11T11:43:25Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z) - UnrealPerson: An Adaptive Pipeline towards Costless Person
Re-identification [102.58619642363959]
本稿では,unrealpersonという,非現実的な画像データをフル活用して,トレーニングとデプロイメントの両面でコストを削減する新しいパイプラインを提案する。
3,000のIDと12万のインスタンスで、MSMT17に直接転送されると38.5%のランク-1の精度が得られる。
論文 参考訳(メタデータ) (2020-12-08T08:15:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。