論文の概要: AI and the Problem of Knowledge Collapse
- arxiv url: http://arxiv.org/abs/2404.03502v2
- Date: Mon, 22 Apr 2024 14:18:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 22:45:14.677527
- Title: AI and the Problem of Knowledge Collapse
- Title(参考訳): AIと知識崩壊の問題
- Authors: Andrew J. Peterson,
- Abstract要約: 特定の知識モードへのアクセスコストを削減することにより、AIが公衆の理解をパラドックス的に損なう可能性のある条件を特定する。
学習者やイノベーターのコミュニティが従来の手法を使うか、割引されたAI支援プロセスに頼るというシンプルなモデルを提供する。
我々のデフォルトモデルでは、AI生成コンテンツに対する20%の割引は、ディスカウントがない場合よりも真実から2.3倍の信条を生成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While artificial intelligence has the potential to process vast amounts of data, generate new insights, and unlock greater productivity, its widespread adoption may entail unforeseen consequences. We identify conditions under which AI, by reducing the cost of access to certain modes of knowledge, can paradoxically harm public understanding. While large language models are trained on vast amounts of diverse data, they naturally generate output towards the 'center' of the distribution. This is generally useful, but widespread reliance on recursive AI systems could lead to a process we define as "knowledge collapse", and argue this could harm innovation and the richness of human understanding and culture. However, unlike AI models that cannot choose what data they are trained on, humans may strategically seek out diverse forms of knowledge if they perceive them to be worthwhile. To investigate this, we provide a simple model in which a community of learners or innovators choose to use traditional methods or to rely on a discounted AI-assisted process and identify conditions under which knowledge collapse occurs. In our default model, a 20% discount on AI-generated content generates public beliefs 2.3 times further from the truth than when there is no discount. An empirical approach to measuring the distribution of LLM outputs is provided in theoretical terms and illustrated through a specific example comparing the diversity of outputs across different models and prompting styles. Finally, based on the results, we consider further research directions to counteract such outcomes.
- Abstract(参考訳): 人工知能は膨大な量のデータを処理し、新たな洞察を生み出し、生産性を高める可能性があるが、その普及は予期せぬ結果を招く可能性がある。
特定の知識モードへのアクセスコストを削減することにより、AIが公衆の理解をパラドックス的に損なう可能性のある条件を特定する。
大規模言語モデルは大量の多様なデータに基づいて訓練されているが、分布の「中心」に向けて自然に出力を生成する。
これは一般的に有用だが、再帰的なAIシステムへの広範な依存は、私たちが"知識の崩壊"と定義するプロセスにつながる可能性がある。
しかし、トレーニング対象のデータを選択できないAIモデルとは異なり、人間は価値あると認識すれば、さまざまな種類の知識を戦略的に探すことができる。
これを調べるために、学習者やイノベーターのコミュニティが従来の手法を使うか、割引されたAI支援プロセスに頼るかを選択し、知識崩壊が起こる条件を特定するための簡単なモデルを提供する。
我々のデフォルトモデルでは、AI生成コンテンツに対する20%の割引は、ディスカウントがない場合よりも真実から2.3倍の信条を生成する。
LLM出力の分布を測定するための実証的なアプローチが理論的に提供され、異なるモデルにまたがる出力の多様性とプロンプトスタイルを比較した特定の例を通して説明される。
最後に,これらの結果に対処するためのさらなる研究の方向性を検討する。
関連論文リスト
- The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - Explainable, Domain-Adaptive, and Federated Artificial Intelligence in
Medicine [5.126042819606137]
我々は、AIによる医療意思決定における特定の課題に対処する3つの主要な方法論的アプローチに焦点を当てる。
ドメイン適応と転送学習により、AIモデルをトレーニングし、複数のドメインにわたって適用することができる。
フェデレーテッド・ラーニングは、機密性の高い個人情報を漏らさずに大規模なモデルを学習することを可能にする。
論文 参考訳(メタデータ) (2022-11-17T03:32:00Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
我々は脳のメタラーニングと連想機構に基づく生涯学習のパラダイムを設計する。
知識の抽出と知識の記憶という2つの側面から問題に取り組む。
提案した学習パラダイムが,異なるタスクのモデルを同じ最適に収束させることができることを理論的に分析した。
論文 参考訳(メタデータ) (2022-08-27T09:27:36Z) - Principled Knowledge Extrapolation with GANs [92.62635018136476]
我々は,知識外挿の新たな視点から,対実合成を研究する。
本稿では, 知識外挿問題に対処するために, クローズド形式判別器を用いた対角ゲームが利用可能であることを示す。
提案手法は,多くのシナリオにおいて,エレガントな理論的保証と優れた性能の両方を享受する。
論文 参考訳(メタデータ) (2022-05-21T08:39:42Z) - Conceptual Modeling and Artificial Intelligence: Mutual Benefits from
Complementary Worlds [0.0]
これまでのところ、主に分離されたCMとAIの分野にアプローチする2つの交差点に取り組むことに興味があります。
このワークショップでは、(一)概念モデリング(CM)がAIにどのような貢献ができるのか、(一)その逆の方法で、多様体相互利益を実現することができるという仮定を取り入れている。
論文 参考訳(メタデータ) (2021-10-16T18:42:09Z) - DISCOS: Bridging the Gap between Discourse Knowledge and Commonsense
Knowledge [42.08569149041291]
代替コモンセンス知識獲得フレームワーク DISCOS を提案します。
DISCOSは高価なコモンセンス知識をより手頃な言語知識資源に投入する。
我々は,ASERの中核部にATOMICを投入することにより,3.4M ATOMICライクな推論コモンセンス知識を得ることができる。
論文 参考訳(メタデータ) (2021-01-01T03:30:38Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
我々は、性別や人種の偏りを意識的に評価したマルチモーダルな合成プロファイルを用いて、自動求人アルゴリズムを訓練する。
我々の方法論と結果は、一般により公平なAIベースのツール、特により公平な自動採用システムを生成する方法を示している。
論文 参考訳(メタデータ) (2020-04-15T15:58:05Z) - Deceptive AI Explanations: Creation and Detection [3.197020142231916]
我々は、AIモデルを用いて、偽りの説明を作成し、検出する方法について検討する。
実験的な評価として,GradCAMによるテキスト分類と説明の変更に着目した。
被験者200名を対象に, 偽装説明がユーザに与える影響について検討した。
論文 参考訳(メタデータ) (2020-01-21T16:41:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。