Deriving Compact QUBO Models via Multilevel Constraint Transformation
- URL: http://arxiv.org/abs/2404.03610v1
- Date: Thu, 4 Apr 2024 17:34:08 GMT
- Title: Deriving Compact QUBO Models via Multilevel Constraint Transformation
- Authors: Oksana Pichugina, Yingcong Tan, Christopher Beck,
- Abstract summary: We propose a novel Multilevel Constraint Transformation Scheme (MLCTS) that derives QUBO models with fewer ancillary binary variables.
For a proof-of-concept, we compare the performance of two QUBO models for the latter problem on both a general-purpose software-based solver and a hardware-based QUBO solver.
The MLCTS-derived models demonstrate significantly better performance for both solvers, in particular, solving up to seven times more instances with the hardware-based approach.
- Score: 0.8192907805418583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advances in customized hardware for quantum annealing and digital/CMOS Annealing, Quadratic Unconstrained Binary Optimization (QUBO) models have received growing attention in the optimization literature. Motivated by an existing general-purpose approach that derives QUBO models from binary linear programs (BLP), we propose a novel Multilevel Constraint Transformation Scheme (MLCTS) that derives QUBO models with fewer ancillary binary variables. We formulate sufficient conditions for the existence of a compact QUBO formulation (i.e., in the original BLP decision space) in terms of constraint levelness and demonstrate the flexibility and applicability of MLCTS on synthetic examples and several well-known combinatorial optimization problems, i.e., the Maximum 2-Satisfiability Problem, the Linear Ordering Problem, the Community Detection Problem, and the Maximum Independence Set Problem. For a proof-of-concept, we compare the performance of two QUBO models for the latter problem on both a general-purpose software-based solver and a hardware-based QUBO solver. The MLCTS-derived models demonstrate significantly better performance for both solvers, in particular, solving up to seven times more instances with the hardware-based approach.
Related papers
- A Primal-Dual-Assisted Penalty Approach to Bilevel Optimization with Coupled Constraints [66.61399765513383]
We develop a BLOCC algorithm to tackle BiLevel Optimization problems with Coupled Constraints.
We demonstrate its effectiveness on two well-known real-world applications.
arXiv Detail & Related papers (2024-06-14T15:59:36Z) - Optimized QUBO formulation methods for quantum computing [0.4999814847776097]
We show how to apply our techniques in case of an NP-hard optimization problem inspired by a real-world financial scenario.
We follow by submitting instances of this problem to two D-wave quantum annealers, comparing the performances of our novel approach with the standard methods used in these scenarios.
arXiv Detail & Related papers (2024-06-11T19:59:05Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
A machine learning (ML) model is trained to emulate a constrained optimization solver.
This paper proposes an alternative approach, in which the ML model is trained to predict dual solution estimates directly.
It enables an end-to-end training scheme is which the dual objective is as a loss function, and solution estimates toward primal feasibility, emulating a Dual Ascent method.
arXiv Detail & Related papers (2024-03-06T04:43:22Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
Contextual decision processes (CMDPs) describe a class of reinforcement learning problems in which the transition kernels and reward functions can change over time with different MDPs indexed by a context variable.
CMDPs serve as an important framework to model many real-world applications with time-varying environments.
We study CMDPs under two linear function approximation models: Model I with context-varying representations and common linear weights for all contexts; and Model II with common representations for all contexts and context-varying linear weights.
arXiv Detail & Related papers (2024-02-05T03:25:04Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - QuAnt: Quantum Annealing with Learnt Couplings [18.40480332882025]
We learn QUBO forms from data through gradient backpropagation instead of deriving them.
We demonstrate the advantages of learnt QUBOs on the diverse problem types of graph matching, 2D point cloud alignment and 3D rotation estimation.
arXiv Detail & Related papers (2022-10-13T17:59:46Z) - Tightening Discretization-based MILP Models for the Pooling Problem
using Upper Bounds on Bilinear Terms [2.6253445491808307]
Discretization-based methods have been proposed for solving non optimization problems with bi-linear terms.
This paper shows that discretization-based MILP models can be used to solve the pooling problem.
arXiv Detail & Related papers (2022-07-08T05:28:59Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
This paper introduces a variational iterative alternating scheme for hierarchical inverse problems with gamma hyperpriors.
The proposed variational inference approach yields accurate reconstruction, provides meaningful uncertainty quantification, and is easy to implement.
arXiv Detail & Related papers (2021-11-26T06:33:29Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
We develop a generic, machine learning-based framework for mapping continuous-space inverse design problems into surrogate unconstrained binary optimization problems.
We showcase the framework's performance on two inverse design problems by optimizing thermal emitter topologies for thermophotovoltaic applications and (ii) diffractive meta-gratings for highly efficient beam steering.
arXiv Detail & Related papers (2021-05-06T02:22:23Z) - Modeling Linear Inequality Constraints in Quadratic Binary Optimization
for Variational Quantum Eigensolver [0.0]
This paper introduces the use of tailored variational forms for variational quantum eigensolver.
Four constraints that usually appear in several optimization problems are modeled.
The main advantage of the proposed methodology is that the number of parameters on the variational form remain constant.
arXiv Detail & Related papers (2020-07-26T23:36:22Z) - Multi-block ADMM Heuristics for Mixed-Binary Optimization on Classical
and Quantum Computers [3.04585143845864]
We present a decomposition-based approach to extend the applicability of current approaches to "quadratic plus convex" mixed binary optimization problems.
We show that the alternating direction method of multipliers (ADMM) can split the MBO into a binary unconstrained problem (that can be solved with quantum algorithms)
The validity of the approach is then showcased by numerical results obtained on several optimization problems via simulations with VQE and QAOA on the quantum circuits implemented in Qiskit.
arXiv Detail & Related papers (2020-01-07T14:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.