Neural Information Organizing and Processing -- Neural Machines
- URL: http://arxiv.org/abs/2404.03676v1
- Date: Thu, 15 Feb 2024 15:15:11 GMT
- Title: Neural Information Organizing and Processing -- Neural Machines
- Authors: Iosif Iulian Petrila,
- Abstract summary: The informational synthesis of neural structures, processes, parameters and characteristics that allow a unified description and modeling as neural machines of natural and artificial neural systems is presented.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The informational synthesis of neural structures, processes, parameters and characteristics that allow a unified description and modeling as neural machines of natural and artificial neural systems is presented. The general informational parameters as the global quantitative measure of the neural systems computing potential as absolute and relative neural power were proposed. Neural information organizing and processing follows the way in which nature manages neural information by developing functions, functionalities and circuits related to different internal or peripheral components and also to the whole system through a non-deterministic memorization, fragmentation and aggregation of afferent and efferent information, deep neural information processing representing multiple alternations of fragmentation and aggregation stages. The relevant neural characteristics were integrated into a neural machine type model that incorporates unitary also peripheral or interface components as the central ones. The proposed approach allows overcoming the technical constraints in artificial computational implementations of neural information processes and also provides a more relevant description of natural ones.
Related papers
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Inferring Inference [7.11780383076327]
We develop a framework for inferring canonical distributed computations from large-scale neural activity patterns.
We simulate recordings for a model brain that implicitly implements an approximate inference algorithm on a probabilistic graphical model.
Overall, this framework provides a new tool for discovering interpretable structure in neural recordings.
arXiv Detail & Related papers (2023-10-04T22:12:11Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
In most artificial neural networks (ANNs), neural computation is abstracted to an activation function that is usually shared between all neurons.
We propose the optimization of neuro-centric parameters to attain a set of diverse neurons that can perform complex computations.
arXiv Detail & Related papers (2023-05-25T11:33:04Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - Synergistic information supports modality integration and flexible
learning in neural networks solving multiple tasks [107.8565143456161]
We investigate the information processing strategies adopted by simple artificial neural networks performing a variety of cognitive tasks.
Results show that synergy increases as neural networks learn multiple diverse tasks.
randomly turning off neurons during training through dropout increases network redundancy, corresponding to an increase in robustness.
arXiv Detail & Related papers (2022-10-06T15:36:27Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Drop, Swap, and Generate: A Self-Supervised Approach for Generating
Neural Activity [33.06823702945747]
We introduce a novel unsupervised approach for learning disentangled representations of neural activity called Swap-VAE.
Our approach combines a generative modeling framework with an instance-specific alignment loss.
We show that it is possible to build representations that disentangle neural datasets along relevant latent dimensions linked to behavior.
arXiv Detail & Related papers (2021-11-03T16:39:43Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
We propose a novel neural generative model inspired by the theory of predictive processing in the brain.
In a similar way, artificial neurons in our generative model predict what neighboring neurons will do, and adjust their parameters based on how well the predictions matched reality.
arXiv Detail & Related papers (2020-12-07T01:20:38Z) - A Neural Dynamic Model based on Activation Diffusion and a
Micro-Explanation for Cognitive Operations [4.416484585765028]
The neural mechanism of memory has a very close relation with the problem of representation in artificial intelligence.
A computational model was proposed to simulate the network of neurons in brain and how they process information.
arXiv Detail & Related papers (2020-11-27T01:34:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.