Scaling of quantum Fisher information for quantum exceptional point sensors
- URL: http://arxiv.org/abs/2404.03803v1
- Date: Thu, 4 Apr 2024 20:47:54 GMT
- Title: Scaling of quantum Fisher information for quantum exceptional point sensors
- Authors: Chun-Hui Liu, Fu Li, Shengwang Du, Jianming Wen, Lan Yang, Chuanwei Zhang,
- Abstract summary: In recent years, significant progress has been made in utilizing the divergence of spectrum response rate at the exceptional point (EP) for sensing in classical systems.
For a quantum EP sensor, an important issue is the relation between the order of the quantum EP and the scaling of quantum Fisher information (QFI)
- Score: 18.33055905849827
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, significant progress has been made in utilizing the divergence of spectrum response rate at the exceptional point (EP) for sensing in classical systems, while the use and characterization of quantum EPs for sensing have been largely unexplored. For a quantum EP sensor, an important issue is the relation between the order of the quantum EP and the scaling of quantum Fisher information (QFI), an essential quantity for characterizing quantum sensors. Here we investigate multi-mode quadratic bosonic systems, which exhibit higher-order EP dynamics, but possess Hermitian Hamiltonians without Langevin noise, thus can be utilized for quantum sensing. We derive an exact analytic formula for the QFI, from which we establish a scaling relation between the QFI and the order of the EP. We apply the formula to study a three-mode EP sensor and a multi-mode bosonic Kitaev chain and show that the EP physics can significantly enhance the sensing sensitivity. Our work establishes the connection between two important fields: non-Hermitian EP dynamics and quantum sensing, and may find important applications in quantum information and quantum non-Hermitian physics.
Related papers
- Bosonic Entanglement and Quantum Sensing from Energy Transfer in two-tone Floquet Systems [1.2499537119440245]
Quantum-enhanced sensors, which surpass the standard quantum limit (circuit) and approach the fundamental precision limits dictated by quantum mechanics, are finding applications across a wide range of scientific fields.
We introduce entanglement and preserve quantum information among many particles in a sensing circuit.
We propose a superconducting-entangled sensor in the microwave regime, highlighting its potential for practical applications in high-precision measurements.
arXiv Detail & Related papers (2024-10-15T00:48:01Z) - Quantum sensing in Kerr parametric oscillators [0.0]
Changes in the ground state at a QPT enhance indicators of parameter estimation.
In systems that lack a QPT, quantum sensitivity can still be enhanced due to excited-state quantum phase transitions.
arXiv Detail & Related papers (2024-07-19T18:00:00Z) - Quantum Sensing with Nanoelectronics: Fisher Information for an Adiabatic Perturbation [0.0]
Quantum systems can offer enhanced precision over their classical counterparts.
Quantum Fisher information (QFI) characterizes the precision of parameter estimation for an ideal measurement.
For quantum dot nanoelectronics devices, we show that electron interactions can lead to exponential scaling of the QFI with system size.
arXiv Detail & Related papers (2024-06-26T18:03:17Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Maximizing information obtainable by quantum sensors through the Quantum Zeno Effect [0.0]
We exploit the Quantum Zeno Effect (QZE) as a tool for maximizing information obtainable by quantum sensors.
We introduce the concept of information amplification by the QZE for a LAC system under off-resonant conditions.
arXiv Detail & Related papers (2024-03-17T20:45:39Z) - Optical Quantum Sensing for Agnostic Environments via Deep Learning [59.088205627308]
We introduce an innovative Deep Learning-based Quantum Sensing scheme.
It enables optical quantum sensors to attain Heisenberg limit (HL) in agnostic environments.
Our findings offer a new lens through which to accelerate optical quantum sensing tasks.
arXiv Detail & Related papers (2023-11-13T09:46:05Z) - How to harness high-dimensional temporal entanglement, using limited
interferometry setups [62.997667081978825]
We develop the first complete analysis of high-dimensional entanglement in the polarization-time-domain.
We show how to efficiently certify relevant density matrix elements and security parameters for Quantum Key Distribution.
We propose a novel setup that can further enhance the noise resistance of free-space quantum communication.
arXiv Detail & Related papers (2023-08-08T17:44:43Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Optimal and Variational Multi-Parameter Quantum Metrology and Vector
Field Sensing [0.0]
We study multi- parameter sensing of 2D and 3D vector fields within the Bayesian framework for $SU(2)$ quantum interferometry.
We present sensors that have limited entanglement capabilities, and yet, significantly outperform sensors that operate without entanglement.
arXiv Detail & Related papers (2023-02-15T17:12:38Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.