論文の概要: A Block-Coordinate Descent EMO Algorithm: Theoretical and Empirical Analysis
- arxiv url: http://arxiv.org/abs/2404.03838v2
- Date: Thu, 11 Apr 2024 00:13:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 17:56:32.778949
- Title: A Block-Coordinate Descent EMO Algorithm: Theoretical and Empirical Analysis
- Title(参考訳): ブロック座標Descent EMOアルゴリズム:理論的および経験的解析
- Authors: Benjamin Doerr, Joshua Knowles, Aneta Neumann, Frank Neumann,
- Abstract要約: 進化的多目的最適化において,ブロック座標降下が効率的である条件が存在するかを検討する。
本稿では,GSEMOのブロックコーディネートバージョンを提案し,その実行時間を標準GSEMOアルゴリズムと比較する。
- 参考スコア(独自算出の注目度): 17.89683724761454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider whether conditions exist under which block-coordinate descent is asymptotically efficient in evolutionary multi-objective optimization, addressing an open problem. Block-coordinate descent, where an optimization problem is decomposed into $k$ blocks of decision variables and each of the blocks is optimized (with the others fixed) in a sequence, is a technique used in some large-scale optimization problems such as airline scheduling, however its use in multi-objective optimization is less studied. We propose a block-coordinate version of GSEMO and compare its running time to the standard GSEMO algorithm. Theoretical and empirical results on a bi-objective test function, a variant of LOTZ, serve to demonstrate the existence of cases where block-coordinate descent is faster. The result may yield wider insights into this class of algorithms.
- Abstract(参考訳): 開問題に対処する進化的多目的最適化において,ブロック座標降下が漸近的に効率的である条件が存在するかどうかを考察する。
ブロックコーディネート降下(Block-coordinate descend)は、最適化問題を決定変数の$k$ブロックに分解し、各ブロックを(他のブロックを固定した)順序で最適化する手法であり、航空スケジューリングなどの大規模最適化問題で使用されるが、多目的最適化におけるその使用はあまり研究されていない。
本稿では,GSEMOのブロックコーディネートバージョンを提案し,その実行時間を標準GSEMOアルゴリズムと比較する。
LOTZの変種である二重対象検定関数に関する理論的および実証的な結果は、ブロック座標降下がより速いケースの存在を実証するのに役立つ。
この結果は、このクラスのアルゴリズムに対するより広範な洞察をもたらす可能性がある。
関連論文リスト
- Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Improving Performance Insensitivity of Large-scale Multiobjective
Optimization via Monte Carlo Tree Search [7.34812867861951]
モンテカルロ木探索に基づく大規模多目的最適化問題の解法を提案する。
提案手法は,モンテカルロ木上に新たなノードを構築するための決定変数をサンプリングし,最適化と評価を行う。
大規模な決定変数による性能感度を低下させるために、さらなる探索のための評価が良いノードを選択する。
論文 参考訳(メタデータ) (2023-04-08T17:15:49Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Enhanced Opposition Differential Evolution Algorithm for Multimodal
Optimization [0.2538209532048866]
現実の問題は、本質的には複数の最適値からなるマルチモーダルである。
古典的な勾配に基づく手法は、目的関数が不連続あるいは微分不可能な最適化問題に対して失敗する。
我々は,MMOPを解くために,拡張オポポジション微分進化(EODE)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-23T16:18:27Z) - A Simple Evolutionary Algorithm for Multi-modal Multi-objective
Optimization [0.0]
マルチモーダル・多目的最適化問題(MMOP)を解くための定常進化アルゴリズムを提案する。
本報告では,1000関数評価の低計算予算を用いて,様々なテストスイートから得られた21個のMMOPの性能について報告する。
論文 参考訳(メタデータ) (2022-01-18T03:31:11Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
通信ネットワークのノード間を分散的に保存するスムーズで強い凸関数の和を最小化するタスクについて検討する。
我々は、これらの下位境界を達成するための2つの最適アルゴリズムを設計する。
我々は,既存の最先端手法と実験的な比較を行うことにより,これらのアルゴリズムの理論的効率を裏付ける。
論文 参考訳(メタデータ) (2021-06-08T15:54:44Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z) - Benchmarking Meta-heuristic Optimization [0.0]
多くのメタヒューリスティックアルゴリズムは非線形関数を解く際に非常に効率的である。
メタヒューリスティックアルゴリズムは、幅広い問題に適用できる問題に依存しない手法である。
論文 参考訳(メタデータ) (2020-07-27T12:25:31Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z) - Gumbel-softmax-based Optimization: A Simple General Framework for
Optimization Problems on Graphs [5.486093983007419]
本稿では,ディープラーニングフレームワークによって強化された高度な自動微分技術に基づく,シンプルで高速で汎用的なアルゴリズムフレームワークを提案する。
高品質なソリューションは、従来のアプローチに比べてはるかに少ない時間で得られる。
論文 参考訳(メタデータ) (2020-04-14T14:11:00Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。