Wasserstein F-tests for Fréchet regression on Bures-Wasserstein manifolds
- URL: http://arxiv.org/abs/2404.03878v2
- Date: Sun, 15 Sep 2024 04:45:46 GMT
- Title: Wasserstein F-tests for Fréchet regression on Bures-Wasserstein manifolds
- Authors: Haoshu Xu, Hongzhe Li,
- Abstract summary: Fr'echet regression on the Bures-Wasserstein manifold is developed.
A test for the null hypothesis of no association is proposed.
Results show that the proposed test has the desired level of significanceally.
- Score: 0.9514940899499753
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper considers the problem of regression analysis with random covariance matrix as outcome and Euclidean covariates in the framework of Fr\'echet regression on the Bures-Wasserstein manifold. Such regression problems have many applications in single cell genomics and neuroscience, where we have covariance matrix measured over a large set of samples. Fr\'echet regression on the Bures-Wasserstein manifold is formulated as estimating the conditional Fr\'echet mean given covariates $x$. A non-asymptotic $\sqrt{n}$-rate of convergence (up to $\log n$ factors) is obtained for our estimator $\hat{Q}_n(x)$ uniformly for $\left\|x\right\| \lesssim \sqrt{\log n}$, which is crucial for deriving the asymptotic null distribution and power of our proposed statistical test for the null hypothesis of no association. In addition, a central limit theorem for the point estimate $\hat{Q}_n(x)$ is obtained, giving insights to a test for covariate effects. The null distribution of the test statistic is shown to converge to a weighted sum of independent chi-squares, which implies that the proposed test has the desired significance level asymptotically. Also, the power performance of the test is demonstrated against a sequence of contiguous alternatives. Simulation results show the accuracy of the asymptotic distributions. The proposed methods are applied to a single cell gene expression data set that shows the change of gene co-expression network as people age.
Related papers
- Byzantine-resilient Federated Learning With Adaptivity to Data Heterogeneity [54.145730036889496]
This paper deals with Gradient learning (FL) in the presence of malicious attacks Byzantine data.
A novel Average Algorithm (RAGA) is proposed, which leverages robustness aggregation and can select a dataset.
arXiv Detail & Related papers (2024-03-20T08:15:08Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Compressed and distributed least-squares regression: convergence rates
with applications to Federated Learning [9.31522898261934]
We investigate the impact of compression on gradient algorithms for machine learning.
We highlight differences in terms of convergence rates between several unbiased compression operators.
We extend our results to the case of federated learning.
arXiv Detail & Related papers (2023-08-02T18:02:00Z) - The Minimax Risk in Testing Uniformity of Poisson Data under Missing Ball Alternatives within a Hypercube [8.285441115330944]
We study the problem of testing the goodness of fit of occurrences of items from many categories to an identical Poisson distribution over the categories.
As a class of alternative hypotheses, we consider the removal of an $ell_p$ ball, $p leq 2$, of radius $epsilon$ from a hypercube.
When the expected number of samples $n$ and number of categories $N$ go to infinity while $epsilon$ is small, the minimax risk asymptotes to $2Phi(-n N2-2/p eps
arXiv Detail & Related papers (2023-05-29T14:26:42Z) - A High-dimensional Convergence Theorem for U-statistics with
Applications to Kernel-based Testing [3.469038201881982]
We prove a convergence theorem for U-statistics of degree two, where the data dimension $d$ is allowed to scale with sample size $n$.
We apply our theory to two popular kernel-based distribution tests, MMD and KSD, whose high-dimensional performance has been challenging to study.
arXiv Detail & Related papers (2023-02-11T12:49:46Z) - Asymptotic Statistical Analysis of $f$-divergence GAN [13.587087960403199]
Generative Adversarial Networks (GANs) have achieved great success in data generation.
We consider the statistical behavior of the general $f$-divergence formulation of GAN.
The resulting estimation method is referred to as Adversarial Gradient Estimation (AGE)
arXiv Detail & Related papers (2022-09-14T18:08:37Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
Conditional local independence is an independence relation among continuous time processes.
No nonparametric test of conditional local independence has been available.
We propose such a nonparametric test based on double machine learning.
arXiv Detail & Related papers (2022-03-25T10:31:02Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
Motivated by the problem of online correlation analysis, we propose the emphStochastic Scaled-Gradient Descent (SSD) algorithm.
We bring these ideas together in an application to online correlation analysis, deriving for the first time an optimal one-time-scale algorithm with an explicit rate of local convergence to normality.
arXiv Detail & Related papers (2021-12-29T18:46:52Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
We use kernel Hilbert spaces for estimating the value function of an infinite-horizon discounted Markov reward process.
We derive a non-asymptotic upper bound on the error with explicit dependence on the eigenvalues of the associated kernel operator.
We prove minimax lower bounds over sub-classes of MRPs.
arXiv Detail & Related papers (2021-09-24T14:48:20Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Tight Nonparametric Convergence Rates for Stochastic Gradient Descent
under the Noiseless Linear Model [0.0]
We analyze the convergence of single-pass, fixed step-size gradient descent on the least-square risk under this model.
As a special case, we analyze an online algorithm for estimating a real function on the unit interval from the noiseless observation of its value at randomly sampled points.
arXiv Detail & Related papers (2020-06-15T08:25:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.