論文の概要: Enhancing Breast Cancer Diagnosis in Mammography: Evaluation and Integration of Convolutional Neural Networks and Explainable AI
- arxiv url: http://arxiv.org/abs/2404.03892v1
- Date: Fri, 5 Apr 2024 05:00:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 17:06:15.300686
- Title: Enhancing Breast Cancer Diagnosis in Mammography: Evaluation and Integration of Convolutional Neural Networks and Explainable AI
- Title(参考訳): マンモグラフィにおける乳癌診断の強化:畳み込みニューラルネットワークと説明可能なAIの評価と統合
- Authors: Maryam Ahmed, Tooba Bibi, Rizwan Ahmed Khan, Sidra Nasir,
- Abstract要約: この研究は、畳み込みニューラルネットワーク(CNN)と説明可能な人工知能(XAI)を組み合わせた統合フレームワークを導入する。
本研究は,マンモグラフィ画像の良悪性と悪性の鑑別を効果的に行うものである。
この研究は、AI駆動意思決定の解釈可能性を高めることによって、AIシステムと医療実践者のコラボレーションを改善するための基礎となる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The study introduces an integrated framework combining Convolutional Neural Networks (CNNs) and Explainable Artificial Intelligence (XAI) for the enhanced diagnosis of breast cancer using the CBIS-DDSM dataset. Utilizing a fine-tuned ResNet50 architecture, our investigation not only provides effective differentiation of mammographic images into benign and malignant categories but also addresses the opaque "black-box" nature of deep learning models by employing XAI methodologies, namely Grad-CAM, LIME, and SHAP, to interpret CNN decision-making processes for healthcare professionals. Our methodology encompasses an elaborate data preprocessing pipeline and advanced data augmentation techniques to counteract dataset limitations, and transfer learning using pre-trained networks, such as VGG-16, DenseNet and ResNet was employed. A focal point of our study is the evaluation of XAI's effectiveness in interpreting model predictions, highlighted by utilising the Hausdorff measure to assess the alignment between AI-generated explanations and expert annotations quantitatively. This approach plays a critical role for XAI in promoting trustworthiness and ethical fairness in AI-assisted diagnostics. The findings from our research illustrate the effective collaboration between CNNs and XAI in advancing diagnostic methods for breast cancer, thereby facilitating a more seamless integration of advanced AI technologies within clinical settings. By enhancing the interpretability of AI-driven decisions, this work lays the groundwork for improved collaboration between AI systems and medical practitioners, ultimately enriching patient care. Furthermore, the implications of our research extend well beyond the current methodologies, advocating for subsequent inquiries into the integration of multimodal data and the refinement of AI explanations to satisfy the needs of clinical practice.
- Abstract(参考訳): 本研究は,CBIS-DDSMデータセットを用いた乳がんの診断に,畳み込みニューラルネットワーク(CNN)と説明可能な人工知能(XAI)を組み合わせた統合フレームワークを提案する。
細調整されたResNet50アーキテクチャを用いて,マンモグラフィ画像の良性・悪性カテゴリへの効果的な分化だけでなく,XAI手法,すなわちGrad-CAM,LIME,SHAPを用いて,医療従事者のCNN決定過程を解釈することで,深層学習モデルの「ブラックボックス」性にも対処する。
VGG-16, DenseNet, ResNetなどの事前学習ネットワークを用いたデータ前処理パイプラインと高度なデータ拡張技術を用いて, データセット制限に対処し, 転送学習を行った。
本研究の焦点は,モデル予測の解釈におけるXAIの有効性を評価することである。
このアプローチは、AI支援診断における信頼性と倫理的公正性を促進する上で、XAIにとって重要な役割を果たす。
本研究は,CNNとXAIが乳がんの診断方法の進歩に効果的に協力し,臨床現場における高度なAI技術のよりシームレスな統合を図ったものである。
この研究は、AI駆動による意思決定の解釈可能性を高めることによって、AIシステムと医療従事者とのコラボレーションを改善するための基礎を築き、最終的には患者のケアを豊かにする。
さらに、本研究の意義は、現在の方法論をはるかに超えて、マルチモーダルデータの統合と、臨床実践のニーズを満たすためのAI説明の洗練に関する今後の調査を提唱している。
関連論文リスト
- Advancing Histopathology-Based Breast Cancer Diagnosis: Insights into Multi-Modality and Explainability [2.8145472964232137]
マルチモーダル技術を用いて、画像データと非画像データを統合することで、乳癌の診断における変革的な進歩を示す。
本稿では,マルチモーダルデータを用いて診断精度,臨床信頼度,患者のエンゲージメントを高めるための説明性を強調する。
論文 参考訳(メタデータ) (2024-06-07T19:23:22Z) - Breast Cancer Diagnosis: A Comprehensive Exploration of Explainable Artificial Intelligence (XAI) Techniques [38.321248253111776]
乳がんの診断・診断における説明可能な人工知能(XAI)技術の適用について検討する。
複雑なAIモデルと実用的な医療アプリケーションの間のギャップを埋めることにおけるXAIの可能性を強調することを目的としている。
論文 参考訳(メタデータ) (2024-06-01T18:50:03Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - The Limits of Perception: Analyzing Inconsistencies in Saliency Maps in XAI [0.0]
説明可能な人工知能(XAI)は、AIの意思決定プロセスの解明に不可欠である。
ブラックボックス」として機能し、その理由が曖昧でアクセスできないため、誤診のリスクが高まる。
この透明性へのシフトは、単に有益であるだけでなく、医療におけるAI統合の責任を負うための重要なステップでもある。
論文 参考訳(メタデータ) (2024-03-23T02:15:23Z) - An Explainable AI Framework for Artificial Intelligence of Medical
Things [2.7774194651211217]
我々はカスタムXAIフレームワークを活用し、LIME(Local Interpretable Model-Agnostic Explanations)、SHAP(SHapley Additive ExPlanations)、Grad-Cam(Grad-weighted Class Activation Mapping)といったテクニックを取り入れた。
提案手法は, 戦略的医療手法の有効性を高め, 信頼度を高め, 医療応用の理解を促進することを目的としている。
我々はXAIフレームワークを脳腫瘍検出に応用し,正確かつ透明な診断方法を示した。
論文 参考訳(メタデータ) (2024-03-07T01:08:41Z) - Enabling Collaborative Clinical Diagnosis of Infectious Keratitis by
Integrating Expert Knowledge and Interpretable Data-driven Intelligence [28.144658552047975]
感染性角膜炎(IK)の診断における知識誘導診断モデル(KGDM)の性能,解釈可能性,臨床的有用性について検討した。
AIベースのバイオマーカーの診断確率比(DOR)は3.011から35.233の範囲で有効である。
コラボレーションの参加者は、人間とAIの両方を上回るパフォーマンスを達成した。
論文 参考訳(メタデータ) (2024-01-14T02:10:54Z) - Polar-Net: A Clinical-Friendly Model for Alzheimer's Disease Detection
in OCTA Images [53.235117594102675]
オプティカルコヒーレンス・トモグラフィーは、網膜微小血管の画像化によってアルツハイマー病(AD)を検出するための有望なツールである。
我々はPolar-Netと呼ばれる新しいディープラーニングフレームワークを提案し、解釈可能な結果を提供し、臨床上の事前知識を活用する。
Polar-Netは既存の最先端の手法よりも優れており,網膜血管変化とADとの関連性について,より貴重な病理学的証拠を提供する。
論文 参考訳(メタデータ) (2023-11-10T11:49:49Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
我々はUCADI(Unified CT-COVID AI Diagnostic Initiative)を立ち上げ、各ホスト機関でAIモデルを分散的にトレーニングし、独立して実行することができる。
本研究は,中国とイギリスに所在する23の病院で採取した3,336例の胸部CT9,573例について検討した。
論文 参考訳(メタデータ) (2021-11-18T00:43:41Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。