論文の概要: Assessing the feasibility of quantum learning algorithms for noisy linear problems
- arxiv url: http://arxiv.org/abs/2404.03932v2
- Date: Tue, 26 Nov 2024 01:27:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:31:59.888586
- Title: Assessing the feasibility of quantum learning algorithms for noisy linear problems
- Title(参考訳): 雑音線形問題に対する量子学習アルゴリズムの実現可能性の評価
- Authors: Minkyu Kim, Panjin Kim,
- Abstract要約: ノイズのある線形問題を解くための量子アルゴリズムは、既存の文献と同じ仮定で再検討される。
この研究の成果には、Griloらによって解かれた量子学習問題の適用性の拡張が含まれている。
一方,本論文では,量子サンプルを用いた雑音線形問題の解法として,効率的な古典的アルゴリズムが存在することも示している。
- 参考スコア(独自算出の注目度): 0.6430989240829326
- License:
- Abstract: Quantum algorithms for solving noisy linear problems are reexamined, under the same assumptions taken from the existing literature. The findings of this work include on the one hand extended applicability of the quantum Fourier transform to the ring learning with errors problem which has been left open by Grilo et al., who first devised a polynomial-time quantum algorithm for solving noisy linear problems with quantum samples. On the other hand, this paper also shows there exist efficient classical algorithms for short integer solution and size-reduced learning with errors problems if the quantum samples used by the previous studies are given.
- Abstract(参考訳): ノイズのある線形問題を解くための量子アルゴリズムは、既存の文献と同じ仮定で再検討される。
この研究の成果は、量子フーリエ変換を環学習に適用し、Grilo et al によって解かれた誤り問題に応用することを含んでおり、彼はまず、量子サンプルでノイズのある線形問題を解く多項式時間量子アルゴリズムを考案した。
一方,本研究では,前回の研究で用いた量子サンプルが与えられた場合,誤り問題を伴う整数解法やサイズ再現学習に有効な古典的アルゴリズムが存在することを示す。
関連論文リスト
- Lower bounds for quantum-inspired classical algorithms via communication complexity [0.5461938536945723]
線形回帰の解法,クラスタリングの監督,主成分分析,レコメンデーションシステム,ハミルトニアンシミュレーションに焦点をあてる。
基底行列のフロベニウスノルムの観点で二次下界を証明する。
これらの問題に対する量子アルゴリズムはフロベニウスノルムにおいて線型であるため、この結果は量子古典的分離が少なくとも二次的であることを意味する。
論文 参考訳(メタデータ) (2024-02-24T02:15:00Z) - Hybrid classical-quantum branch-and-bound algorithm for solving integer
linear problems [0.0]
量子アニールは、QUBOの定式化で表されるいくつかのロジスティック最適化問題を解くのに適している。
量子異方体が提案する解法は一般に最適ではなく、熱ノイズやその他の乱雑な効果は計算に関わる量子ビットの数が大きすぎるときに生じる。
本稿では,従来の分枝分枝分枝法を用いて,より少ない量子ビット数で表されるサブプロブレムに分割する手法を提案する。
論文 参考訳(メタデータ) (2023-11-16T09:19:01Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
期待されている量子コンピュータの応用は、科学と産業にまたがる。
本稿では,量子アルゴリズムの応用分野について検討する。
私たちは、各領域における課題と機会を"エンドツーエンド"な方法で概説します。
論文 参考訳(メタデータ) (2023-10-04T17:53:55Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Robust Dequantization of the Quantum Singular value Transformation and
Quantum Machine Learning Algorithms [0.0]
この弱い仮定の下では、ランダム化線形代数の技法がどれだけ多く適用できるかを示す。
また、これらの結果を用いて、多くの量子機械学習アルゴリズムの頑健な復号化を行う。
論文 参考訳(メタデータ) (2023-04-11T02:09:13Z) - Error Analysis of the Variational Quantum Eigensolver Algorithm [0.18188255328029254]
変分量子固有解法(VQE)とその個々の量子サブルーチンについて検討する。
我々は,量子処理コール中に単一エラーが発生した場合,VQEアルゴリズムがすでに効果的に崩壊していることを示す。
論文 参考訳(メタデータ) (2023-01-18T02:02:30Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
量子アルゴリズムにおける最悪のケースと平均ケースの削減を設計する問題について検討する。
量子アルゴリズムの明示的で効率的な変換は、入力のごく一部でのみ正し、全ての入力で正しくなる。
論文 参考訳(メタデータ) (2022-12-06T22:01:49Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
我々は、リコメンダシステムと最小二乗回帰のためのクエリをサポートする古典的な(量子でない)動的データ構造を作成する。
これらの問題に対する以前の量子インスパイアされたアルゴリズムは、レバレッジやリッジレベレッジスコアを偽装してサンプリングしていると我々は主張する。
論文 参考訳(メタデータ) (2020-11-09T01:13:07Z) - Quantum Geometric Machine Learning for Quantum Circuits and Control [78.50747042819503]
我々は、量子幾何学的制御問題に対するディープラーニングの適用をレビューし、拡張する。
量子回路合成問題における時間-最適制御の強化について述べる。
我々の研究結果は、時間-最適制御問題に対する機械学習と幾何学的手法を組み合わせた量子制御と量子情報理論の研究者にとって興味深いものである。
論文 参考訳(メタデータ) (2020-06-19T19:12:14Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
小型地震インバージョン問題を解決するために,D波量子アニールに量子アルゴリズムを適用した。
量子コンピュータによって達成される精度は、少なくとも古典的コンピュータと同程度である。
論文 参考訳(メタデータ) (2020-05-06T14:18:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。