Balancing Progress and Responsibility: A Synthesis of Sustainability Trade-Offs of AI-Based Systems
- URL: http://arxiv.org/abs/2404.03995v1
- Date: Fri, 5 Apr 2024 10:11:08 GMT
- Title: Balancing Progress and Responsibility: A Synthesis of Sustainability Trade-Offs of AI-Based Systems
- Authors: Apoorva Nalini Pradeep Kumar, Justus Bogner, Markus Funke, Patricia Lago,
- Abstract summary: We aim to synthesize trade-offs related to sustainability in the context of integrating AI into software systems.
The study was conducted in collaboration with a Dutch financial organization.
- Score: 8.807173854357597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in artificial intelligence (AI) capabilities have increased the eagerness of companies to integrate AI into software systems. While AI can be used to have a positive impact on several dimensions of sustainability, this is often overshadowed by its potential negative influence. While many studies have explored sustainability factors in isolation, there is insufficient holistic coverage of potential sustainability benefits or costs that practitioners need to consider during decision-making for AI adoption. We therefore aim to synthesize trade-offs related to sustainability in the context of integrating AI into software systems. We want to make the sustainability benefits and costs of integrating AI more transparent and accessible for practitioners. The study was conducted in collaboration with a Dutch financial organization. We first performed a rapid review that led to the inclusion of 151 research papers. Afterward, we conducted six semi-structured interviews to enrich the data with industry perspectives. The combined results showcase the potential sustainability benefits and costs of integrating AI. The labels synthesized from the review regarding potential sustainability benefits were clustered into 16 themes, with "energy management" being the most frequently mentioned one. 11 themes were identified in the interviews, with the top mentioned theme being "employee wellbeing". Regarding sustainability costs, the review discovered seven themes, with "deployment issues" being the most popular one, followed by "ethics & society". "Environmental issues" was the top theme from the interviews. Our results provide valuable insights to organizations and practitioners for understanding the potential sustainability implications of adopting AI.
Related papers
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
We show the effects of performance pressure on AI advice reliance when laypeople complete a common AI-assisted task.
We find that when the stakes are high, people use AI advice more appropriately than when stakes are lower, regardless of the presence of an AI explanation.
arXiv Detail & Related papers (2024-10-21T22:39:52Z) - Artificial Intelligence in Industry 4.0: A Review of Integration Challenges for Industrial Systems [45.31340537171788]
Cyber-Physical Systems (CPS) generate vast data sets that can be leveraged by Artificial Intelligence (AI) for applications including predictive maintenance and production planning.
Despite the demonstrated potential of AI, its widespread adoption in sectors like manufacturing remains limited.
arXiv Detail & Related papers (2024-05-28T20:54:41Z) - The Narrow Depth and Breadth of Corporate Responsible AI Research [3.364518262921329]
We show that the majority of AI firms show limited or no engagement in this critical subfield of AI.
Leading AI firms exhibit significantly lower output in responsible AI research compared to their conventional AI research.
Our results highlight the urgent need for industry to publicly engage in responsible AI research.
arXiv Detail & Related papers (2024-05-20T17:26:43Z) - Now, Later, and Lasting: Ten Priorities for AI Research, Policy, and Practice [63.20307830884542]
Next several decades may well be a turning point for humanity, comparable to the industrial revolution.
Launched a decade ago, the project is committed to a perpetual series of studies by multidisciplinary experts.
We offer ten recommendations for action that collectively address both the short- and long-term potential impacts of AI technologies.
arXiv Detail & Related papers (2024-04-06T22:18:31Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - Artificial Intelligence for Real Sustainability? -- What is Artificial
Intelligence and Can it Help with the Sustainability Transformation? [0.0]
This article briefly explains, classifies, and theorises AI technology.
It then politically contextualises that analysis in light of the sustainability discourse.
It argues that AI can play a small role in moving towards sustainable societies.
arXiv Detail & Related papers (2023-06-15T15:40:00Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - A Survey on AI Sustainability: Emerging Trends on Learning Algorithms
and Research Challenges [35.317637957059944]
We review major trends in machine learning approaches that can address the sustainability problem of AI.
We will highlight the major limitations of existing studies and propose potential research challenges and directions for the development of next generation of sustainable AI techniques.
arXiv Detail & Related papers (2022-05-08T09:38:35Z) - An Empirical Analysis of AI Contributions to Sustainable Cities (SDG11) [4.56877715768796]
The application of AI has far-reaching implications for the 17 Sustainable Development Goals.
We analyze the contribution of AI to support the progress of SDG 11 (Sustainable Cities and Communities)
Our analysis revealed that AI systems have indeed contributed to advancing sustainable cities in several ways, but many projects are still working for citizens and not with them.
arXiv Detail & Related papers (2022-02-06T22:30:23Z) - Artificial intelligence for Sustainable Energy: A Contextual Topic
Modeling and Content Analysis [0.0]
We offer a novel contextual topic modeling combining LDA, BERT, and Clustering.
We then combined these computational analyses with content analysis of related scientific publications to identify the main scholarly topics, sub-themes, and cross-topic themes within scientific research on sustainable AI in energy.
Our research identified eight dominant topics including sustainable buildings, AI-based DSSs for urban water management, climate artificial intelligence, Agriculture 4, the convergence of AI with IoT, and AI-based evaluation of renewable technologies.
arXiv Detail & Related papers (2021-10-02T15:51:51Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.