論文の概要: Validation of critical maneuvers based on shared control
- arxiv url: http://arxiv.org/abs/2404.04011v1
- Date: Fri, 5 Apr 2024 10:38:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 16:24:44.833130
- Title: Validation of critical maneuvers based on shared control
- Title(参考訳): 共有制御に基づく臨界操作の検証
- Authors: Mauricio Marcano, Joseba Sarabia, Asier Zubizarreta, Sergio Díaz,
- Abstract要約: 本稿では,自動走行システムにおける臨界操作に対する共有制御方式の有効性について述べる。
提案手法は,低視認性シナリオの克服と横方向の回避行動という,2つの重要な操作に重点を置いている。
その結果,安全性とユーザ受け入れ性が向上し,共有制御戦略の有効性が示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents the validation of shared control strategies for critical maneuvers in automated driving systems. Shared control involves collaboration between the driver and automation, allowing both parties to actively engage and cooperate at different levels of the driving task. The involvement of the driver adds complexity to the control loop, necessitating comprehensive validation methodologies. The proposed approach focuses on two critical maneuvers: overtaking in low visibility scenarios and lateral evasive actions. A modular architecture with an arbitration module and shared control algorithms is implemented, primarily focusing on the lateral control of the vehicle. The validation is conducted using a dynamic simulator, involving 8 real drivers interacting with a virtual environment. The results demonstrate improved safety and user acceptance, indicating the effectiveness of the shared control strategies in comparison with no shared-control support. Future work involves implementing shared control in drive-by-wire systems to enhance safety and driver comfort during critical maneuvers. Overall, this research contributes to the development and validation of shared control approaches in automated driving systems.
- Abstract(参考訳): 本稿では,自動走行システムにおける臨界操作に対する共有制御方式の有効性について述べる。
共有コントロールには、ドライバーと自動化のコラボレーションが含まれており、双方が運転タスクのさまざまなレベルで積極的に関与し協力することができる。
ドライバの関与はコントロールループに複雑さを増し、包括的な検証手法を必要とする。
提案手法は,低視認性シナリオの克服と横方向の回避行動という,2つの重要な操作に重点を置いている。
調停モジュールと共有制御アルゴリズムを備えたモジュラーアーキテクチャが実装され、主に車両の側面制御に焦点を当てている。
バリデーションは、仮想環境と対話する8人の実ドライバを含む、動的シミュレータを用いて実行される。
その結果, 共有制御戦略の有効性を, 共有制御支援に比較して示すとともに, 安全性とユーザ受け入れ性の向上が示された。
将来の作業は、重要な操作中に安全と運転者の快適性を高めるために、ドライブ・バイ・ワイヤシステムで共有制御を実装することである。
本研究は,自動走行システムにおける共有制御手法の開発と検証に寄与する。
関連論文リスト
- A Systematic Study of Multi-Agent Deep Reinforcement Learning for Safe and Robust Autonomous Highway Ramp Entry [0.0]
本研究では,車体前方移動動作を制御するハイウェイランプ機能について検討し,車体が進入する高速道路交通の流れとの衝突を最小限に抑える。
我々はこの問題に対してゲーム理論的マルチエージェント(MA)アプローチを採用し、深層強化学習(DRL)に基づくコントローラの利用について検討する。
本稿では,2台以上の車両(エージェント)の相互作用を研究することで既存の作業を拡張し,交通量やエゴカーを付加して道路シーンを体系的に拡張する。
論文 参考訳(メタデータ) (2024-11-21T21:23:46Z) - Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
コネクテッド・オートモービルズ(CAV)は世界中の道路試験を開始したが、複雑なシナリオにおける安全性と効率性はまだ十分ではない。
本稿では,対話型かつ学習可能なLLM駆動協調運転フレームワークCoDrivingLLMを提案する。
論文 参考訳(メタデータ) (2024-09-19T14:36:00Z) - V2X-Lead: LiDAR-based End-to-End Autonomous Driving with
Vehicle-to-Everything Communication Integration [4.166623313248682]
本稿では,V2X(Vine-to-Everything)通信を統合したLiDARを用いたエンドツーエンド自動運転手法を提案する。
提案手法は,搭載したLiDARセンサとV2X通信データを融合させることにより,不完全な部分的観測を処理することを目的としている。
論文 参考訳(メタデータ) (2023-09-26T20:26:03Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
接続された自動運転車(CAV)は、交通事故におけるヒューマンエラーを低減し、道路効率を向上し、様々なタスクを実行する。これらのメリットを享受するためには、CAVが目標とする目的地へ自律的にナビゲートする必要がある。
本稿では,通信理論,制御理論,機械学習の収束を利用して,効果的なCAVナビゲーションを実現する手法を提案する。
論文 参考訳(メタデータ) (2023-07-05T21:38:36Z) - Non-zero-sum Game Control for Multi-vehicle Driving via Reinforcement
Learning [0.0]
本稿では,非ゼロサムゲームとしてマルチサイクル駆動シナリオを構築した。
決定はナッシュ均衡駆動戦略によってなされる。
我々のアルゴリズムは、加速度と操舵角を直接制御することで、完全に駆動できる。
論文 参考訳(メタデータ) (2023-02-08T09:27:20Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
本稿では,車載マイクロシミュレーションの合理化手法について述べる。
最小限の手動設計で高性能な制御戦略を発見する。
この研究は、波動緩和、交通信号、ランプ計測に類似した多くの創発的挙動を明らかにしている。
論文 参考訳(メタデータ) (2022-07-30T16:23:45Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Policy Search for Model Predictive Control with Application to Agile
Drone Flight [56.24908013905407]
MPCのためのポリシ・フォー・モデル・予測制御フレームワークを提案する。
具体的には、パラメータ化コントローラとしてMPCを定式化し、パラメータ化の難しい決定変数を高レベルポリシーとして表現する。
シミュレーションと実環境の両方において,我々の制御器が堅牢かつリアルタイムに制御性能を発揮することを示す実験を行った。
論文 参考訳(メタデータ) (2021-12-07T17:39:24Z) - Data-driven Koopman Operators for Model-based Shared Control of
Human-Machine Systems [66.65503164312705]
本稿では,データ駆動型共有制御アルゴリズムを提案する。
ユーザのインタラクションに関するダイナミクスと情報は、Koopman演算子を使用して観察から学習される。
モデルに基づく共有制御は、自然な学習やユーザのみの制御パラダイムと比較して、タスクとコントロールのメトリクスを著しく改善する。
論文 参考訳(メタデータ) (2020-06-12T14:14:07Z) - Cooperative Highway Work Zone Merge Control based on Reinforcement
Learning in A Connected and Automated Environment [6.402634424631123]
本稿では,人工知能が実現した協調運転行動に基づく高速道路の作業ゾーン統合制御戦略を提案し,評価する。
提案手法は、全車両が完全に自動化され、接続され、協調していると仮定する。
その結果, この協調的RL型マージ制御は, 流動性と安全性の両面で, 後期マージや早期マージといった一般的な戦略を著しく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2020-01-21T21:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。