論文の概要: Dynamic Risk Assessment Methodology with an LDM-based System for Parking Scenarios
- arxiv url: http://arxiv.org/abs/2404.04040v1
- Date: Fri, 5 Apr 2024 11:49:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 16:14:58.181304
- Title: Dynamic Risk Assessment Methodology with an LDM-based System for Parking Scenarios
- Title(参考訳): LDMシステムによる駐車シナリオの動的リスク評価手法
- Authors: Paola Natalia Cañas, Mikel García, Nerea Aranjuelo, Marcos Nieto, Aitor Iglesias, Igor Rodríguez,
- Abstract要約: 本稿では,駐車場におけるADAS(Advanced Driving Assistance Systems)アルゴリズムの動的リスク評価手法について述べる。
車両内外の状況に依存するダイナミックリスク方法論の定義、ADASベンチマーク目的のためのマルチセンサーによるリスクアセスメントデータセットの作成、車外および車内からのデータを融合してLDMベースのダイナミックリスクアセスメントシステム(DRAS)を構築するローカルダイナミックマップ(LDM)などが含まれる。
- 参考スコア(独自算出の注目度): 2.6938549839852524
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper describes the methodology for building a dynamic risk assessment for ADAS (Advanced Driving Assistance Systems) algorithms in parking scenarios, fusing exterior and interior perception for a better understanding of the scene and a more comprehensive risk estimation. This includes the definition of a dynamic risk methodology that depends on the situation from inside and outside the vehicle, the creation of a multi-sensor dataset of risk assessment for ADAS benchmarking purposes, and a Local Dynamic Map (LDM) that fuses data from the exterior and interior of the car to build an LDM-based Dynamic Risk Assessment System (DRAS).
- Abstract(参考訳): 本稿では,駐車場におけるADAS(Advanced Driving Assistance Systems)アルゴリズムの動的リスク評価手法について述べる。
これには、車内外の状況に依存するダイナミックリスク方法論の定義、ADASベンチマーク目的のマルチセンサーによるリスクアセスメントデータセットの作成、車外および車内からのデータを融合してLDMベースのダイナミックリスクアセスメントシステム(DRAS)を構築するローカルダイナミックマップ(LDM)などが含まれる。
関連論文リスト
- EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [47.69642609574771]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
EAIRiskBenchは、EAIシナリオにおける自動物理的リスクアセスメントのための新しいフレームワークである。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に着目し, 完全性, 幻覚, 不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - GUARD-D-LLM: An LLM-Based Risk Assessment Engine for the Downstream uses of LLMs [0.0]
本稿では,大規模言語モデル(LLM)の下流から発生するリスクについて検討する。
テキストベースのユーザ入力から派生した特定のユースケースに関連する脅威を特定し、ランク付けする新しいLCMベースのリスクアセスメントエンジン(GUARD-D-LLM)を導入する。
30の知的エージェントを統合することで、この革新的なアプローチは、悪夢のリスクを特定し、その重症度を測定し、緩和のためのターゲットとなる提案を提供し、リスク認識開発を促進する。
論文 参考訳(メタデータ) (2024-04-02T05:25:17Z) - Provable Risk-Sensitive Distributional Reinforcement Learning with
General Function Approximation [54.61816424792866]
本稿では,リスク感性分布強化学習(RS-DisRL)と静的リプシッツリスク対策(LRM),一般関数近似について紹介する。
モデルに基づく関数近似のためのモデルベース戦略であるtextttRS-DisRL-M と、一般値関数近似のためのモデルフリーアプローチである textttRS-DisRL-V の2つの革新的なメタアルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-02-28T08:43:18Z) - LADRI: LeArning-based Dynamic Risk Indicator in Automated Driving System [0.38073142980732994]
本稿では,自動運転システム(ADS)におけるリアルタイム動的リスクアセスメントのためのフレームワークを提案する。
提案手法はこれらの制限を超越し、ニューラルネットワーク(ANN)を用いてリスク次元を慎重に分析し分類する。
論文 参考訳(メタデータ) (2024-01-04T11:09:15Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
本稿では,異なるAVの行動のリスクを評価するためのデータ駆動型フレームワークを提案する。
本稿では,衝突を引き起こす可能性のある名目行動から最小限の偏差を示す,対実的安全マージンの概念を提案する。
論文 参考訳(メタデータ) (2023-08-02T09:48:08Z) - RCP-RF: A Comprehensive Road-car-pedestrian Risk Management Framework
based on Driving Risk Potential Field [1.625213292350038]
本研究では,コネクテッド・アンド・オートマチック・ビークル(CAV)環境下での電位場理論に基づく総合運転リスク管理フレームワークRCP-RFを提案する。
既存のアルゴリズムと異なり,エゴ車と障害物車と歩行者係数の移動傾向は,提案手法において正当に考慮されている。
実世界のデータセットNGSIMおよび実AVプラットフォーム上での最先端手法に対する提案手法の優位性を検証する実証的研究を行った。
論文 参考訳(メタデータ) (2023-05-04T01:54:37Z) - SOTIF Entropy: Online SOTIF Risk Quantification and Mitigation for
Autonomous Driving [16.78084912175149]
本稿では,SOTIFリスクを最小化するための体系的アプローチとして,自己監視・自己適応システムを提案する。
このシステムのコアは、自動運転車内で実装された人工知能アルゴリズムのリスクモニタリングである。
固有認識アルゴリズムのリスクと外部衝突のリスクは、SOTIFエントロピーを介して共同で定量化される。
論文 参考訳(メタデータ) (2022-11-08T05:02:12Z) - I Know You Can't See Me: Dynamic Occlusion-Aware Safety Validation of
Strategic Planners for Autonomous Vehicles Using Hypergames [12.244501203346566]
我々は,状況リスクを評価するための,新しいマルチエージェント動的閉塞リスク尺度を開発した。
AVにおける戦略的プランナーの安全性を評価するための,ホワイトボックス,シナリオベース,アクセラレーション型安全検証フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-20T19:38:14Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBAは、確率論的モデリング、情報理論、統計学といった側面を組み合わせた安全な強化学習のためのフレームワークである。
我々は,低次元および高次元の状態表現を含む安全な力学系ベンチマークを用いて,アルゴリズムの評価を行った。
アクティブなメトリクスと安全性の制約を詳細に分析することで,フレームワークの有効性を直感的に評価する。
論文 参考訳(メタデータ) (2020-06-12T10:40:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。