Is BERT Robust to Label Noise? A Study on Learning with Noisy Labels in
Text Classification
- URL: http://arxiv.org/abs/2204.09371v1
- Date: Wed, 20 Apr 2022 10:24:19 GMT
- Title: Is BERT Robust to Label Noise? A Study on Learning with Noisy Labels in
Text Classification
- Authors: Dawei Zhu, Michael A. Hedderich, Fangzhou Zhai, David Ifeoluwa
Adelani, Dietrich Klakow
- Abstract summary: Wrong labels in training data occur when human annotators make mistakes or when the data is generated via weak or distant supervision.
It has been shown that complex noise-handling techniques are required to prevent models from fitting this label noise.
We show in this work that, for text classification tasks with modern NLP models like BERT, over a variety of noise types, existing noisehandling methods do not always improve its performance, and may even deteriorate it.
- Score: 23.554544399110508
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Incorrect labels in training data occur when human annotators make mistakes
or when the data is generated via weak or distant supervision. It has been
shown that complex noise-handling techniques - by modeling, cleaning or
filtering the noisy instances - are required to prevent models from fitting
this label noise. However, we show in this work that, for text classification
tasks with modern NLP models like BERT, over a variety of noise types, existing
noisehandling methods do not always improve its performance, and may even
deteriorate it, suggesting the need for further investigation. We also back our
observations with a comprehensive analysis.
Related papers
- NoisyAG-News: A Benchmark for Addressing Instance-Dependent Noise in Text Classification [7.464154519547575]
Existing research on learning with noisy labels predominantly focuses on synthetic noise patterns.
We constructed a benchmark dataset to better understand label noise in real-world text classification settings.
Our findings reveal that while pre-trained models are resilient to synthetic noise, they struggle against instance-dependent noise.
arXiv Detail & Related papers (2024-07-09T06:18:40Z) - NoiseBench: Benchmarking the Impact of Real Label Noise on Named Entity Recognition [3.726602636064681]
We present an analysis that shows that real noise is significantly more challenging than simulated noise.
We show that current state-of-the-art models for noise-robust learning fall far short of their theoretically achievable upper bound.
arXiv Detail & Related papers (2024-05-13T10:20:31Z) - Noisy Label Processing for Classification: A Survey [2.8821062918162146]
In the long, tedious process of data annotation, annotators are prone to make mistakes, resulting in incorrect labels of images.
It is crucial to combat noisy labels for computer vision tasks, especially for classification tasks.
We propose an algorithm to generate a synthetic label noise pattern guided by real-world data.
arXiv Detail & Related papers (2024-04-05T15:11:09Z) - Robust Tiny Object Detection in Aerial Images amidst Label Noise [50.257696872021164]
This study addresses the issue of tiny object detection under noisy label supervision.
We propose a DeNoising Tiny Object Detector (DN-TOD), which incorporates a Class-aware Label Correction scheme.
Our method can be seamlessly integrated into both one-stage and two-stage object detection pipelines.
arXiv Detail & Related papers (2024-01-16T02:14:33Z) - Denoising Enhanced Distantly Supervised Ultrafine Entity Typing [36.14308856513851]
We build a noise model to estimate the unknown labeling noise distribution over input contexts and noisy type labels.
With the noise model, more trustworthy labels can be recovered by subtracting the estimated noise from the input.
We propose an entity typing model, which adopts a bi-encoder architecture, is trained on the denoised data.
arXiv Detail & Related papers (2022-10-18T05:20:16Z) - Learning with Noisy Labels Revisited: A Study Using Real-World Human
Annotations [54.400167806154535]
Existing research on learning with noisy labels mainly focuses on synthetic label noise.
This work presents two new benchmark datasets (CIFAR-10N, CIFAR-100N)
We show that real-world noisy labels follow an instance-dependent pattern rather than the classically adopted class-dependent ones.
arXiv Detail & Related papers (2021-10-22T22:42:11Z) - Instance-dependent Label-noise Learning under a Structural Causal Model [92.76400590283448]
Label noise will degenerate the performance of deep learning algorithms.
By leveraging a structural causal model, we propose a novel generative approach for instance-dependent label-noise learning.
arXiv Detail & Related papers (2021-09-07T10:42:54Z) - Training Classifiers that are Universally Robust to All Label Noise
Levels [91.13870793906968]
Deep neural networks are prone to overfitting in the presence of label noise.
We propose a distillation-based framework that incorporates a new subcategory of Positive-Unlabeled learning.
Our framework generally outperforms at medium to high noise levels.
arXiv Detail & Related papers (2021-05-27T13:49:31Z) - Towards Robustness to Label Noise in Text Classification via Noise
Modeling [7.863638253070439]
Large datasets in NLP suffer from noisy labels, due to erroneous automatic and human annotation procedures.
We study the problem of text classification with label noise, and aim to capture this noise through an auxiliary noise model over the classifier.
arXiv Detail & Related papers (2021-01-27T05:41:57Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z) - A Second-Order Approach to Learning with Instance-Dependent Label Noise [58.555527517928596]
The presence of label noise often misleads the training of deep neural networks.
We show that the errors in human-annotated labels are more likely to be dependent on the difficulty levels of tasks.
arXiv Detail & Related papers (2020-12-22T06:36:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.