論文の概要: player2vec: A Language Modeling Approach to Understand Player Behavior in Games
- arxiv url: http://arxiv.org/abs/2404.04234v3
- Date: Fri, 7 Jun 2024 22:01:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 00:24:28.981710
- Title: player2vec: A Language Modeling Approach to Understand Player Behavior in Games
- Title(参考訳): player2vec: ゲームにおけるプレイヤーの振る舞いを理解するための言語モデリングアプローチ
- Authors: Tianze Wang, Maryam Honari-Jahromi, Styliani Katsarou, Olga Mikheeva, Theodoros Panagiotakopoulos, Sahar Asadi, Oleg Smirnov,
- Abstract要約: 過去の行動ログから潜在ユーザ表現を学習する手法は、eコマース、コンテンツストリーミング、その他の設定におけるレコメンデーションタスクの注目を集めている。
本稿では,長距離トランスフォーマーモデルをプレイヤーの行動データに拡張することで,この制限を克服する新しい手法を提案する。
ゲームにおける行動追跡の具体性について議論し,文中の単語に類似した方法でゲーム内イベントを視聴することで,前処理とトークン化のアプローチを提案する。
- 参考スコア(独自算出の注目度): 2.2216044069240657
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Methods for learning latent user representations from historical behavior logs have gained traction for recommendation tasks in e-commerce, content streaming, and other settings. However, this area still remains relatively underexplored in video and mobile gaming contexts. In this work, we present a novel method for overcoming this limitation by extending a long-range Transformer model from the natural language processing domain to player behavior data. We discuss specifics of behavior tracking in games and propose preprocessing and tokenization approaches by viewing in-game events in an analogous way to words in sentences, thus enabling learning player representations in a self-supervised manner in the absence of ground-truth annotations. We experimentally demonstrate the efficacy of the proposed approach in fitting the distribution of behavior events by evaluating intrinsic language modeling metrics. Furthermore, we qualitatively analyze the emerging structure of the learned embedding space and show its value for generating insights into behavior patterns to inform downstream applications.
- Abstract(参考訳): 過去の行動ログから潜在ユーザ表現を学習する方法は、eコマース、コンテンツストリーミング、その他の設定におけるレコメンデーションタスクの注目を集めている。
しかし、この領域はビデオやモバイルのゲーム分野ではまだ比較的過小評価されている。
本研究では,自然言語処理領域からプレイヤー行動データへの長距離トランスフォーマーモデルの拡張により,この制限を克服する新しい手法を提案する。
本研究では,ゲームにおける行動追跡の具体性を議論し,ゲーム内イベントを文中の単語と類似して見ることによって,前処理とトークン化のアプローチを提案する。
本研究では,本提案手法の有効性を,固有言語モデルメトリクスの評価により実験的に検証した。
さらに、学習した埋め込み空間の出現構造を質的に分析し、下流アプリケーションに通知するための行動パターンに対する洞察を生み出す価値を示す。
関連論文リスト
- Inverse Dynamics Pretraining Learns Good Representations for Multitask
Imitation [66.86987509942607]
このようなパラダイムを模倣学習でどのように行うべきかを評価する。
本稿では,事前学習コーパスがマルチタスクのデモンストレーションから成り立つ環境について考察する。
逆動力学モデリングはこの設定に適していると主張する。
論文 参考訳(メタデータ) (2023-05-26T14:40:46Z) - Pretraining on Interactions for Learning Grounded Affordance
Representations [22.290431852705662]
我々はニューラルネットワークを訓練し、シミュレーションされた相互作用において物体の軌道を予測する。
我々のネットワークの潜在表現は、観測された価格と観測されていない価格の両方を区別していることが示される。
提案する手法は,従来の語彙表現の形式的意味概念と統合可能な言語学習の手法である。
論文 参考訳(メタデータ) (2022-07-05T19:19:53Z) - Learning Actor-centered Representations for Action Localization in
Streaming Videos using Predictive Learning [18.757368441841123]
ストリーミングビデオのアクションの認識やローカライズなどのイベント認識タスクは、視覚的な理解タスクに取り組む上で不可欠です。
我々は,連続的階層的予測学習という概念を通じて,テクスタクタ中心の表現を学習する問題に取り組む。
イベント知覚の認知理論に触発され、新しい自己監督型フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-29T06:06:58Z) - Unsupervised Speech Representation Learning for Behavior Modeling using
Triplet Enhanced Contextualized Networks [28.957236790411585]
本研究では,対話における人間の行動の定常的特性を利用して,音声から行動情報を抽出する表現学習手法を提案する。
本稿では,エンコーダ・デコーダをベースとしたDeep Contextualized Network (DCN) と,動作コンテキストをキャプチャするTriplet-Enhanced DCN (TE-DCN) フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-01T22:44:23Z) - Deep Reinforcement Learning with Stacked Hierarchical Attention for
Text-based Games [64.11746320061965]
自然言語の文脈におけるインタラクティブなシミュレーションであるテキストベースゲームの強化学習について検討する。
エージェントの動作が解釈可能な推論手順によって生成され、支援されるように、意思決定のための知識グラフを用いた明示的な推論を行うことを目指している。
提案手法を多数の人為的ベンチマークゲームで広範囲に評価し,本手法が既存のテキストベースエージェントよりも優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2020-10-22T12:40:22Z) - Learning Modality Interaction for Temporal Sentence Localization and
Event Captioning in Videos [76.21297023629589]
そこで本稿では,ビデオの各対のモダリティの相補的情報をよりよく活用するために,ペアワイズなモダリティ相互作用を学習するための新しい手法を提案する。
提案手法は,4つの標準ベンチマークデータセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2020-07-28T12:40:59Z) - Spatio-Temporal Graph for Video Captioning with Knowledge Distillation [50.034189314258356]
空間と時間におけるオブジェクトの相互作用を利用したビデオキャプションのためのグラフモデルを提案する。
我々のモデルは解釈可能なリンクを構築し、明示的な視覚的グラウンドを提供することができる。
オブジェクト数の変動による相関を回避するため,オブジェクト認識型知識蒸留機構を提案する。
論文 参考訳(メタデータ) (2020-03-31T03:58:11Z) - Temporal Embeddings and Transformer Models for Narrative Text
Understanding [72.88083067388155]
キャラクタ関係モデリングのための物語テキスト理解のための2つのアプローチを提案する。
これらの関係の時間的進化は動的単語埋め込みによって説明され、時間とともに意味的変化を学ぶように設計されている。
最新の変換器モデルBERTに基づく教師付き学習手法を用いて文字間の静的な関係を検出する。
論文 参考訳(メタデータ) (2020-03-19T14:23:12Z) - On the interaction between supervision and self-play in emergent
communication [82.290338507106]
本研究は,2つのカテゴリの学習信号と,サンプル効率の向上を目標とする学習信号の関係について検討する。
人間のデータに基づく教師付き学習による初等訓練エージェントが,自己演奏が会話に優れていることが判明した。
論文 参考訳(メタデータ) (2020-02-04T02:35:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。