GroundCocoa: A Benchmark for Evaluating Compositional & Conditional Reasoning in Language Models
- URL: http://arxiv.org/abs/2404.04237v2
- Date: Thu, 13 Feb 2025 22:13:21 GMT
- Title: GroundCocoa: A Benchmark for Evaluating Compositional & Conditional Reasoning in Language Models
- Authors: Harsh Kohli, Sachin Kumar, Huan Sun,
- Abstract summary: GroundCocoa is a lexically diverse benchmark connecting these reasoning skills to the real-world problem of flight booking.
Our task involves aligning detailed user preferences with available flight options presented in a multiple-choice format.
Results indicate a significant disparity in performance among current state-of-the-art LLMs with even the best performing model, GPT-4 Turbo, not exceeding 67% accuracy despite advanced prompting techniques.
- Score: 14.108788704400643
- License:
- Abstract: The rapid progress of large language models (LLMs) has seen them excel and frequently surpass human performance on standard benchmarks. This has enabled many downstream applications, such as LLM agents, to rely on their reasoning to address complex task requirements. However, LLMs are known to unexpectedly falter in simple tasks and under seemingly straightforward circumstances - underscoring the need for better and more diverse evaluation setups to measure their true capabilities. To this end, we choose to study compositional and conditional reasoning, two aspects that are central to human cognition, and introduce GroundCocoa - a lexically diverse benchmark connecting these reasoning skills to the real-world problem of flight booking. Our task involves aligning detailed user preferences with available flight options presented in a multiple-choice format. Results indicate a significant disparity in performance among current state-of-the-art LLMs with even the best performing model, GPT-4 Turbo, not exceeding 67% accuracy despite advanced prompting techniques.
Related papers
- EmbodiedBench: Comprehensive Benchmarking Multi-modal Large Language Models for Vision-Driven Embodied Agents [63.43699771428243]
EmbodiedBench is an extensive benchmark designed to evaluate vision-driven embodied agents.
We evaluated 13 leading proprietary and open-source MLLMs within EmbodiedBench.
MLLMs excel at high-level tasks but struggle with low-level manipulation.
arXiv Detail & Related papers (2025-02-13T18:11:34Z) - Are Your LLMs Capable of Stable Reasoning? [38.03049704515947]
Large Language Models (LLMs) have demonstrated remarkable progress in complex reasoning tasks.
However, a significant discrepancy persists between benchmark performances and real-world applications.
We introduce G-Pass@k, a novel evaluation metric that provides a continuous assessment of model performance.
We present LiveMathBench, a dynamic benchmark comprising challenging, contemporary mathematical problems.
arXiv Detail & Related papers (2024-12-17T18:12:47Z) - MM-R$^3$: On (In-)Consistency of Multi-modal Large Language Models (MLLMs) [26.475993408532304]
We study the ability of an MLLM model to produce semantically similar or identical responses to semantically similar queries.
We propose the MM-R$3$ benchmark, which analyses the performance in terms of consistency and accuracy in SoTA MLLMs.
Our analysis reveals that consistency does not always align with accuracy, indicating that models with higher accuracy are not necessarily more consistent, and vice versa.
arXiv Detail & Related papers (2024-10-07T06:36:55Z) - HELMET: How to Evaluate Long-Context Language Models Effectively and Thoroughly [34.205934899868346]
We present HELMET, a comprehensive benchmark encompassing seven diverse, application-centric categories.
We find that synthetic tasks like NIAH are not good predictors of downstream performance.
While most LCLMs achieve perfect NIAH scores, open-source models significantly lag behind closed ones when the task requires full-context reasoning.
arXiv Detail & Related papers (2024-10-03T17:20:11Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - On the Worst Prompt Performance of Large Language Models [93.13542053835542]
Performance of large language models (LLMs) is acutely sensitive to the phrasing of prompts.
We introduce RobustAlpacaEval, a new benchmark that consists of semantically equivalent case-level queries.
Experiments on RobustAlpacaEval with ChatGPT and six open-source LLMs from the Llama, Mistral, and Gemma families uncover substantial variability in model performance.
arXiv Detail & Related papers (2024-06-08T13:40:38Z) - MM-PhyQA: Multimodal Physics Question-Answering With Multi-Image CoT Prompting [0.6675160100853794]
We curated a novel dataset, MM-PhyQA, which comprises well-constructed, high schoollevel multimodal physics problems.
For generating answers for questions consisting of multimodal input, we employed Zero-shot prediction using GPT-4 and utilized LLaVA (LLaVA and LLaVA-1.5), the latter of which were fine-tuned on our dataset.
For evaluating the performance of LLMs consisting solely of textual input, we tested the performance of the base and fine-tuned versions of the Mistral-7B and LLaMA2-7b models.
arXiv Detail & Related papers (2024-04-11T07:11:47Z) - PPTC-R benchmark: Towards Evaluating the Robustness of Large Language
Models for PowerPoint Task Completion [96.47420221442397]
We construct adversarial user instructions by attacking user instructions at sentence, semantic, and multi-language levels.
We test 3 closed-source and 4 open-source LLMs using a benchmark that incorporates robustness settings.
We find that GPT-4 exhibits the highest performance and strong robustness in our benchmark.
arXiv Detail & Related papers (2024-03-06T15:33:32Z) - InfiMM-Eval: Complex Open-Ended Reasoning Evaluation For Multi-Modal
Large Language Models [50.03163753638256]
Multi-modal Large Language Models (MLLMs) are increasingly prominent in the field of artificial intelligence.
Our benchmark comprises three key reasoning categories: deductive, abductive, and analogical reasoning.
We evaluate a selection of representative MLLMs using this rigorously developed open-ended multi-step elaborate reasoning benchmark.
arXiv Detail & Related papers (2023-11-20T07:06:31Z) - Large Language Models are Not Yet Human-Level Evaluators for Abstractive
Summarization [66.08074487429477]
We investigate the stability and reliability of large language models (LLMs) as automatic evaluators for abstractive summarization.
We find that while ChatGPT and GPT-4 outperform the commonly used automatic metrics, they are not ready as human replacements.
arXiv Detail & Related papers (2023-05-22T14:58:13Z) - Large Language Models are Zero-Shot Reasoners [28.6899375595088]
Chain of thought (CoT) prompting is a technique for eliciting complex multi-step reasoning through step-by-step answer examples.
We show that LLMs are decent zero-shot reasoners by simply adding Let's think step by step'' before each answer.
Experimental results demonstrate that our Zero-shot-CoT, using the same single prompt template, significantly outperforms zero-shot LLM performances.
arXiv Detail & Related papers (2022-05-24T09:22:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.