論文の概要: DiffOp-net: A Differential Operator-based Fully Convolutional Network for Unsupervised Deformable Image Registration
- arxiv url: http://arxiv.org/abs/2404.04244v1
- Date: Fri, 5 Apr 2024 17:46:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 15:55:28.085337
- Title: DiffOp-net: A Differential Operator-based Fully Convolutional Network for Unsupervised Deformable Image Registration
- Title(参考訳): DiffOp-net:unsupervised deformable Image Registrationのための差分演算子に基づく完全畳み込みネットワーク
- Authors: Jiong Wu,
- Abstract要約: 本稿では、新しい微分演算子を登録フレームワークに導入することにより、教師なしの変形可能な画像登録を強化する新しい手法を提案する。
この作用素は速度場に作用し、それを双対空間にマッピングすることで、最適化中の速度場の滑らかさを保証する。
画像ペア内の大きな変形を捉えるという課題に対処するために,クロスコーディネート・アテンション・モジュールを導入する。
- 参考スコア(独自算出の注目度): 0.43512163406552007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing unsupervised deformable image registration methods usually rely on metrics applied to the gradients of predicted displacement or velocity fields as a regularization term to ensure transformation smoothness, which potentially limits registration accuracy. In this study, we propose a novel approach to enhance unsupervised deformable image registration by introducing a new differential operator into the registration framework. This operator, acting on the velocity field and mapping it to a dual space, ensures the smoothness of the velocity field during optimization, facilitating accurate deformable registration. In addition, to tackle the challenge of capturing large deformations inside image pairs, we introduce a Cross-Coordinate Attention module (CCA) and embed it into a proposed Fully Convolutional Networks (FCNs)-based multi-resolution registration architecture. Evaluation experiments are conducted on two magnetic resonance imaging (MRI) datasets. Compared to various state-of-the-art registration approaches, including a traditional algorithm and three representative unsupervised learning-based methods, our method achieves superior accuracies, maintaining desirable diffeomorphic properties, and exhibiting promising registration speed.
- Abstract(参考訳): 既存の教師なしの変形可能な画像登録法は、通常、正規化用語として予測された変位や速度場の勾配に適用されるメトリクスに頼り、変換のスムーズさが保証され、登録精度が制限される可能性がある。
本研究では、新しい微分演算子を登録フレームワークに導入することにより、教師なしの変形可能な画像登録を強化する新しい手法を提案する。
この演算子は速度場に作用して双対空間にマッピングし、最適化中の速度場の滑らかさを保証し、正確な変形可能な登録を容易にする。
さらに,画像ペア内の大きな変形を捕捉する課題に対処するために,CCA(Cross-Coordinate Attention Module)を導入し,提案するFCN(Fully Convolutional Networks)ベースのマルチレゾリューション登録アーキテクチャに組み込む。
2つのMRIデータセットを用いて評価実験を行った。
従来のアルゴリズムや教師なし学習に基づく3つの代表的な手法など,さまざまな最先端の登録手法と比較して,本手法は優れた精度を実現し,望ましい微分特性を維持し,良好な登録速度を示す。
関連論文リスト
- Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
条件付き可逆ニューラルネットワーク(cINN)に基づくドメイン転送手法を提案する。
提案手法は本質的に,その可逆的アーキテクチャによるサイクル一貫性を保証し,ネットワークトレーニングを最大限効率的に行うことができる。
提案手法は,2つの下流分類タスクにおいて,現実的なスペクトルデータの生成を可能にし,その性能を向上する。
論文 参考訳(メタデータ) (2023-03-17T18:00:27Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - Affine Medical Image Registration with Coarse-to-Fine Vision Transformer [11.4219428942199]
本稿では,3次元医用画像登録のための学習ベースアルゴリズムであるCoarse-to-Fine Vision Transformer (C2FViT)を提案する。
本手法は, 登録精度, 堅牢性, 一般化性の観点から, 既存のCNNベースのアフィン登録法よりも優れている。
論文 参考訳(メタデータ) (2022-03-29T03:18:43Z) - Unsupervised Image Registration Towards Enhancing Performance and
Explainability in Cardiac And Brain Image Analysis [3.5718941645696485]
モダリティ内およびモダリティ内アフィンおよび非リグイド画像登録は、臨床画像診断において必須の医用画像解析プロセスである。
本稿では、アフィンおよび非剛性変換を正確にモデル化できる教師なしディープラーニング登録手法を提案する。
本手法は,モーダリティ不変の潜在反感を学習するために,双方向のモーダリティ画像合成を行う。
論文 参考訳(メタデータ) (2022-03-07T12:54:33Z) - Dual-Flow Transformation Network for Deformable Image Registration with
Region Consistency Constraint [95.30864269428808]
現在のディープラーニング(DL)ベースの画像登録アプローチは、畳み込みニューラルネットワークを利用して、ある画像から別の画像への空間変換を学習する。
一対のイメージ内のROIの類似性を最大化する領域整合性制約を持つ新しいデュアルフロー変換ネットワークを提案する。
4つの公開3次元MRIデータセットを用いた実験により,提案手法は精度と一般化において最高の登録性能が得られることを示した。
論文 参考訳(メタデータ) (2021-12-04T05:30:44Z) - A Learning Framework for Diffeomorphic Image Registration based on
Quasi-conformal Geometry [1.2891210250935146]
本稿では,非教師付き学習フレームワークである準コンフォーマル登録ネットワーク(QCRegNet)を提案する。
QCRegNetは推定器ネットワークとベルトラミソルバネットワーク(BSNet)から構成される
その結果、登録精度は最先端の手法に匹敵し、微分同相性はかなり保証されていることがわかった。
論文 参考訳(メタデータ) (2021-10-20T14:23:24Z) - Unsupervised Multimodal Image Registration with Adaptative Gradient
Guidance [23.461130560414805]
教師なし学習に基づく手法は、変形可能な画像登録における精度と効率よりも有望な性能を示す。
既存の手法の予測変形場は、登録済み画像対に完全に依存する。
両モデルから推定される変形場を利用する新しい多モード登録フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-12T05:47:20Z) - DeepGMR: Learning Latent Gaussian Mixture Models for Registration [113.74060941036664]
ポイントクラウドの登録は、3Dコンピュータビジョン、グラフィックス、ロボット工学の基本的な問題である。
本稿では,最初の学習ベース登録法であるDeep Gaussian Mixture Registration(DeepGMR)を紹介する。
提案手法は,最先端の幾何学的および学習的登録手法と比較して,良好な性能を示す。
論文 参考訳(メタデータ) (2020-08-20T17:25:16Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z) - Identity Enhanced Residual Image Denoising [61.75610647978973]
我々は、アイデンティティマッピングモジュールのチェーンと、画像の復号化のための残像アーキテクチャの残像からなる、完全な畳み込みネットワークモデルを学ぶ。
提案するネットワークは,従来の最先端・CNNアルゴリズムよりも極めて高い数値精度と画像品質を実現している。
論文 参考訳(メタデータ) (2020-04-26T04:52:22Z) - Fast Symmetric Diffeomorphic Image Registration with Convolutional
Neural Networks [11.4219428942199]
本稿では,新しい非教師付き対称画像登録手法を提案する。
大規模脳画像データセットを用いた3次元画像登録法について検討した。
論文 参考訳(メタデータ) (2020-03-20T22:07:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。