論文の概要: GENEVIC: GENetic data Exploration and Visualization via Intelligent interactive Console
- arxiv url: http://arxiv.org/abs/2404.04299v1
- Date: Thu, 4 Apr 2024 20:53:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 23:37:10.676063
- Title: GENEVIC: GENetic data Exploration and Visualization via Intelligent interactive Console
- Title(参考訳): genEVIC:インテリジェントインタラクティブコンソールによるジェネティックデータ探索と可視化
- Authors: Anindita Nath, Savannah Mwesigwa, Yulin Dai, Xiaoqian Jiang, Zhongming Zhao,
- Abstract要約: GENEVICは、遺伝的データ生成と生物医学的知識発見のギャップを埋める、AI駆動のチャットフレームワークである。
カスタマイズされたドメイン固有の遺伝情報の分析、検索、可視化を自動化する。
機能を統合して、タンパク質相互作用ネットワークの生成、遺伝子セットの強化、PubMed、Google Scholar、arXivから科学文献の検索を行う。
- 参考スコア(独自算出の注目度): 6.786793669890866
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Summary: The vast generation of genetic data poses a significant challenge in efficiently uncovering valuable knowledge. Introducing GENEVIC, an AI-driven chat framework that tackles this challenge by bridging the gap between genetic data generation and biomedical knowledge discovery. Leveraging generative AI, notably ChatGPT, it serves as a biologist's 'copilot'. It automates the analysis, retrieval, and visualization of customized domain-specific genetic information, and integrates functionalities to generate protein interaction networks, enrich gene sets, and search scientific literature from PubMed, Google Scholar, and arXiv, making it a comprehensive tool for biomedical research. In its pilot phase, GENEVIC is assessed using a curated database that ranks genetic variants associated with Alzheimer's disease, schizophrenia, and cognition, based on their effect weights from the Polygenic Score Catalog, thus enabling researchers to prioritize genetic variants in complex diseases. GENEVIC's operation is user-friendly, accessible without any specialized training, secured by Azure OpenAI's HIPAA-compliant infrastructure, and evaluated for its efficacy through real-time query testing. As a prototype, GENEVIC is set to advance genetic research, enabling informed biomedical decisions. Availability and implementation: GENEVIC is publicly accessible at https://genevic-anath2024.streamlit.app. The underlying code is open-source and available via GitHub at https://github.com/anath2110/GENEVIC.git.
- Abstract(参考訳): まとめ:この膨大な世代の遺伝データは、価値ある知識を効率的に発見する上で大きな課題となる。
この課題に対処するAI駆動のチャットフレームワークであるGENEVICの導入は、遺伝データ生成と生物医学的知識発見のギャップを埋めることによるものだ。
生成AI、特にChatGPTを活用することで、生物学者の「コパイロット」として機能する。
カスタマイズされたドメイン固有の遺伝情報の分析、検索、視覚化を自動化し、機能を統合してタンパク質相互作用ネットワークを生成し、遺伝子セットを豊かにし、PubMed、Google Scholar、arXivから科学文献を検索する。
試験段階において、GENEVICは、アルツハイマー病、統合失調症、認知に関連する遺伝的変異をポリジェニックスコアカタログの作用量に基づいてランク付けし、複雑な疾患における遺伝的変異を優先順位付けするデータベースを用いて評価される。
GENEVICの操作はユーザフレンドリで、特別なトレーニングなしでアクセス可能で、Azure OpenAIのHIPAA準拠インフラストラクチャによって保護され、リアルタイムクエリテストを通じてその有効性を評価する。
原型として、GENEVICは遺伝子研究を推進し、情報的な生体医学的決定を可能にする。
可用性と実装:GENEVICはhttps://genevic-anath2024.streamlit.app.comで公開されている。
基盤となるコードはオープンソースで、GitHubでhttps://github.com/anath2110/GENEVIC.gitで公開されている。
関連論文リスト
- BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments [112.25067497985447]
そこで,BioDiscoveryAgentを紹介した。このエージェントは,新しい実験を設計し,その結果の理由を明らかにし,仮説空間を効率的にナビゲートし,望ましい解に到達させる。
BioDiscoveryAgentは、機械学習モデルをトレーニングすることなく、新しい実験を独自に設計することができる。
6つのデータセットで関連する遺伝的摂動を予測することで、平均21%の改善が達成されている。
論文 参考訳(メタデータ) (2024-05-27T19:57:17Z) - Toward a Team of AI-made Scientists for Scientific Discovery from Gene
Expression Data [9.767546641019862]
我々は、科学的な発見パイプラインを合理化するために設計された新しいフレームワーク、AIマニュフェストチーム(TAIS)を紹介する。
TAISは、プロジェクトマネージャ、データエンジニア、ドメインエキスパートを含むシミュレートされた役割で構成され、それぞれがLLM(Large Language Model)によって表現される。
これらの役割は、典型的にはデータ科学者が行うタスクを再現するために協力し、疾患予測遺伝子を特定することに焦点を当てている。
論文 参考訳(メタデータ) (2024-02-15T06:30:12Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
遺伝子ワイド・アソシエーション(GWAS)は、遺伝的変異と特定の形質の関係を同定するために用いられる。
画像遺伝学の表現学習は、GWASによって引き起こされる固有の課題により、ほとんど探索されていない。
本稿では,GWAS の具体的な課題に対処するために,トランスモーダル学習フレームワーク Genetic InfoMax (GIM) を提案する。
論文 参考訳(メタデータ) (2023-09-26T03:59:21Z) - Applying BioBERT to Extract Germline Gene-Disease Associations for Building a Knowledge Graph from the Biomedical Literature [0.0]
本稿では,ジェムリン遺伝子と疾患を結合する知識グラフ構築手法SimpleGermKGを提案する。
遺伝子および疾患の抽出には、バイオメディカルコーパス上でトレーニング済みのBERTモデルであるBioBERTを用いる。
記事,遺伝子,疾患間の意味的関連性について,部分的関係性アプローチを実装した。
知識グラフには297の遺伝子、130の疾患、46,747のトリプルが含まれている。
論文 参考訳(メタデータ) (2023-09-11T18:05:12Z) - Genetic heterogeneity analysis using genetic algorithm and network
science [2.6166087473624318]
ゲノムワイド・アソシエーション(GWAS)は、疾患に感受性のある遺伝的変数を同定することができる。
遺伝的効果に絡み合った遺伝的変数は、しばしば低い効果サイズを示す。
本稿では,FCSNet(Feature Co-Selection Network)という,GWASのための新しい特徴選択機構を提案する。
論文 参考訳(メタデータ) (2023-08-12T01:28:26Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
汎用AIは、さまざまなデータ型を解釈する汎用性のために、制限に対処する可能性を秘めている。
本稿では,最初のオープンソースかつ軽量な視覚言語基盤モデルであるBiomedGPTを提案する。
論文 参考訳(メタデータ) (2023-05-26T17:14:43Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - DeepProphet2 -- A Deep Learning Gene Recommendation Engine [0.0]
人工知能(AI)による遺伝子レコメンデーションの可能性について論じる。
トランスフォーマーベースのモデルは、よく計算された無償の紙製コーパスPubMedで訓練されている。
ユースケースのセットは、実際の単語設定におけるアルゴリズムの潜在的な応用を示している。
論文 参考訳(メタデータ) (2022-08-03T08:54:13Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - A Semi-Supervised Generative Adversarial Network for Prediction of
Genetic Disease Outcomes [0.0]
本稿では, 遺伝的な遺伝的データセットを作成するために, gGAN (Generative Adversarial Networks) を導入する。
我々のゴールは、遺伝子プロファイルだけで病気の重篤な形態を発達させる新しい個人の正当性を決定することである。
提案モデルは自己認識型であり、ネットワークがトレーニングされたデータと十分に互換性のある新しい遺伝子プロファイルを決定することができる。
論文 参考訳(メタデータ) (2020-07-02T15:35:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。