論文の概要: DeepLINK-T: deep learning inference for time series data using knockoffs and LSTM
- arxiv url: http://arxiv.org/abs/2404.04317v1
- Date: Fri, 5 Apr 2024 17:47:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 23:27:22.602592
- Title: DeepLINK-T: deep learning inference for time series data using knockoffs and LSTM
- Title(参考訳): DeepLINK-T:ノックオフとLSTMを用いた時系列データのディープラーニング推論
- Authors: Wenxuan Zuo, Zifan Zhu, Yuxuan Du, Yi-Chun Yeh, Jed A. Fuhrman, Jinchi Lv, Yingying Fan, Fengzhu Sun,
- Abstract要約: 本研究では,時系列データ(DeepLink-T)に対するノックオフを用いた新しいディープラーニング推論手法を提案する。
これは、所定のレベルで偽発見率(FDR)を制御しながら、回帰において重要な時系列変数の選択に焦点を当てる。
DeepLink-Tの3つの重要な要素は、1)時系列のノックオフ変数を生成するLong Short-Term Memory(LSTM)オートエンコーダ、2)オリジナル変数とノックオフ変数の両方を使用したLSTM予測ネットワーク、3)FDR制御による変数選択のためのノックオフフレームワークの適用である。
- 参考スコア(独自算出の注目度): 7.831716013866564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-dimensional longitudinal time series data is prevalent across various real-world applications. Many such applications can be modeled as regression problems with high-dimensional time series covariates. Deep learning has been a popular and powerful tool for fitting these regression models. Yet, the development of interpretable and reproducible deep-learning models is challenging and remains underexplored. This study introduces a novel method, Deep Learning Inference using Knockoffs for Time series data (DeepLINK-T), focusing on the selection of significant time series variables in regression while controlling the false discovery rate (FDR) at a predetermined level. DeepLINK-T combines deep learning with knockoff inference to control FDR in feature selection for time series models, accommodating a wide variety of feature distributions. It addresses dependencies across time and features by leveraging a time-varying latent factor structure in time series covariates. Three key ingredients for DeepLINK-T are 1) a Long Short-Term Memory (LSTM) autoencoder for generating time series knockoff variables, 2) an LSTM prediction network using both original and knockoff variables, and 3) the application of the knockoffs framework for variable selection with FDR control. Extensive simulation studies have been conducted to evaluate DeepLINK-T's performance, showing its capability to control FDR effectively while demonstrating superior feature selection power for high-dimensional longitudinal time series data compared to its non-time series counterpart. DeepLINK-T is further applied to three metagenomic data sets, validating its practical utility and effectiveness, and underscoring its potential in real-world applications.
- Abstract(参考訳): 高次元時系列データは、様々な実世界のアプリケーションで広く使われている。
そのような応用の多くは、高次元の時系列共変量を持つ回帰問題としてモデル化することができる。
ディープラーニングは、これらの回帰モデルに適合するためのポピュラーで強力なツールです。
しかし、解釈可能かつ再現可能なディープラーニングモデルの開発は困難であり、未調査のままである。
本研究では,時間系列データ(DeepLINK-T)に対するノックオフを用いた深層学習推論(Deep Learning Inference)を提案する。
DeepLINK-Tは、深層学習とノックオフ推論を組み合わせることで、時系列モデルの特徴選択におけるFDRを制御する。
時系列の共変量における時間変化の潜在因子構造を活用することで、時間と機能間の依存関係に対処する。
DeepLINK-Tの3つの重要な材料
1)時系列のノックオフ変数を生成するためのLong Short-Term Memory(LSTM)オートエンコーダ。
2)オリジナル変数とノックオフ変数の両方を用いたLSTM予測ネットワーク
3) FDR制御による可変選択のためのノックオフフレームワークの適用。
DeepLINK-Tの性能評価のための大規模なシミュレーション研究が行われ、FDRを効果的に制御し、非時系列データと比較して高次元長手時系列データに優れた特徴選択能力を示す。
DeepLINK-Tは、3つのメダゲノミクスデータセットに適用され、実用性と有効性を検証し、現実世界の応用におけるその可能性を裏付ける。
関連論文リスト
- Deep Time Series Models: A Comprehensive Survey and Benchmark [74.28364194333447]
時系列データは、現実世界のシナリオにおいて非常に重要である。
近年、時系列コミュニティで顕著なブレークスルーが見られた。
多様な分析タスクのためのディープ時系列モデルの公正なベンチマークとして、時系列ライブラリ(TSLib)をリリースします。
論文 参考訳(メタデータ) (2024-07-18T08:31:55Z) - Multi-Scale Dilated Convolution Network for Long-Term Time Series Forecasting [17.132063819650355]
時系列の周期と傾向を捉えるために,MSDCN(Multi Scale Dilated Convolution Network)を提案する。
指数関数的に増加する拡張と異なるカーネルサイズを持つ異なる畳み込みブロックを設計し、異なるスケールで時系列データをサンプリングする。
提案手法の有効性を検証するため,8つの長期時系列予測ベンチマークデータセットを用いて実験を行った。
論文 参考訳(メタデータ) (2024-05-09T02:11:01Z) - TSLANet: Rethinking Transformers for Time Series Representation Learning [19.795353886621715]
時系列データは、その固有の長短の依存関係によって特徴づけられる。
本稿では,時系列タスクの普遍的畳み込みモデルとして,新しい時系列軽量ネットワーク(TSLANet)を導入する。
我々の実験では、TSLANetは分類、予測、異常検出にまたがる様々なタスクにおいて最先端のモデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2024-04-12T13:41:29Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
暗黙の神経表現(INR)は、データの正確で解像度に依存しないエンコーディングを提供する強力なツールとして最近登場した。
本稿では、INRを用いて時系列の表現を分析し、再構成精度とトレーニング収束速度の点で異なるアクティベーション関数を比較した。
本稿では,INRを利用して時系列データセット全体の圧縮潜在表現を学習するハイパーネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-11T14:05:51Z) - Triformer: Triangular, Variable-Specific Attentions for Long Sequence
Multivariate Time Series Forecasting--Full Version [50.43914511877446]
本稿では,高い効率と精度を確保するために,三角形,可変特性に着目した注意点を提案する。
我々はTriformerが精度と効率の両方で最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-04-28T20:41:49Z) - Deep Generative model with Hierarchical Latent Factors for Time Series
Anomaly Detection [40.21502451136054]
本研究は、時系列異常検出のための新しい生成モデルであるDGHLを提示する。
トップダウンの畳み込みネットワークは、新しい階層的な潜在空間を時系列ウィンドウにマッピングし、時間ダイナミクスを利用して情報を効率的にエンコードする。
提案手法は,4つのベンチマーク・データセットにおいて,現在の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-02-15T17:19:44Z) - Time Series Forecasting with Ensembled Stochastic Differential Equations
Driven by L\'evy Noise [2.3076895420652965]
我々は、ニューラルネットワークを備えたSDEの集合を用いて、ノイズのある時系列の長期的な傾向を予測する。
まず、位相空間再構成法を用いて時系列データの固有次元を抽出する。
次に、$alpha$-stable L'evyの動作によって駆動されるSDEを探索し、時系列データをモデル化し、ニューラルネットワーク近似を用いて問題を解く。
論文 参考訳(メタデータ) (2021-11-25T16:49:01Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
時系列データから要約機能を自動的に学習するためのデータ駆動型戦略を提案する。
以上の結果から,データから要約的特徴を学習することで,手作りの値に基づいてLFI手法よりも優れる可能性が示唆された。
論文 参考訳(メタデータ) (2020-12-04T19:21:37Z) - A Deep Structural Model for Analyzing Correlated Multivariate Time
Series [11.009809732645888]
相関した多変量時系列入力を処理できる深層学習構造時系列モデルを提案する。
モデルは、トレンド、季節性、イベントコンポーネントを明示的に学習し、抽出する。
我々は,様々な時系列データセットに関する総合的な実験を通して,そのモデルと最先端のいくつかの手法を比較した。
論文 参考訳(メタデータ) (2020-01-02T18:48:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。