論文の概要: Reconfigurable and Scalable Honeynet for Cyber-Physical Systems
- arxiv url: http://arxiv.org/abs/2404.04385v1
- Date: Fri, 5 Apr 2024 20:06:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 21:28:04.009031
- Title: Reconfigurable and Scalable Honeynet for Cyber-Physical Systems
- Title(参考訳): サイバー物理システムのための再構成可能でスケーラブルなハニーネット
- Authors: Luís Sousa, José Cecílio, Pedro Ferreira, Alan Oliveira,
- Abstract要約: ハニーポットとハニーネットはICSに攻撃を検出し、理解することを目的としている。
本稿では,サイバー物理システムのためのスケーラブルで再構成可能なハニーネットについて述べる。
また、ハニーネットに対する攻撃を自動生成してテストし、検証する。
- 参考スコア(独自算出の注目度): 0.4545286225250997
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Industrial Control Systems (ICS) constitute the backbone of contemporary industrial operations, ranging from modest heating, ventilation, and air conditioning systems to expansive national power grids. Given their pivotal role in critical infrastructure, there has been a concerted effort to enhance security measures and deepen our comprehension of potential cyber threats within this domain. To address these challenges, numerous implementations of Honeypots and Honeynets intended to detect and understand attacks have been employed for ICS. This approach diverges from conventional methods by focusing on making a scalable and reconfigurable honeynet for cyber-physical systems. It will also automatically generate attacks on the honeynet to test and validate it. With the development of a scalable and reconfigurable Honeynet and automatic attack generation tools, it is also expected that the system will serve as a basis for producing datasets for training algorithms for detecting and classifying attacks in cyber-physical honeynets.
- Abstract(参考訳): インダストリアル・コントロール・システムズ(ICS)は、暖房、換気、空調システムから全国的な電力網まで、現代の産業活動のバックボーンを構成する。
重要なインフラにおいて重要な役割を担っていることから、セキュリティ対策を強化し、このドメイン内の潜在的なサイバー脅威の理解を深める努力が続けられている。
これらの課題に対処するために、ICSに攻撃を検出し理解することを目的としたHoneypotsとHoneynetsの多くの実装が採用されている。
このアプローチは、サイバー物理システムのためのスケーラブルで再構成可能なハニーネットを作ることに集中することで、従来の方法と異なる。
また、ハニーネットに対する攻撃を自動生成してテストし、検証する。
スケーラブルで再構成可能なHoneynetと自動攻撃生成ツールの開発により、このシステムはサイバー物理ハニーネットの攻撃を検出し分類するためのトレーニングアルゴリズムのデータセットを作成する基盤となることも期待されている。
関連論文リスト
- Simulation of Multi-Stage Attack and Defense Mechanisms in Smart Grids [2.0766068042442174]
電力グリッドのインフラと通信のダイナミクスを再現するシミュレーション環境を導入する。
このフレームワークは多様なリアルな攻撃データを生成し、サイバー脅威を検出し緩和するための機械学習アルゴリズムを訓練する。
また、高度な意思決定支援システムを含む、新興のセキュリティ技術を評価するための、制御された柔軟なプラットフォームも提供する。
論文 参考訳(メタデータ) (2024-12-09T07:07:17Z) - AI-based Attacker Models for Enhancing Multi-Stage Cyberattack Simulations in Smart Grids Using Co-Simulation Environments [1.4563527353943984]
スマートグリッドへの移行により、高度なサイバー脅威に対する電力システムの脆弱性が増大した。
本稿では,モジュール型サイバーアタックの実行に自律エージェントを用いたシミュレーションフレームワークを提案する。
当社のアプローチは、データ生成のための柔軟で汎用的なソースを提供し、より高速なプロトタイピングと開発リソースと時間の削減を支援します。
論文 参考訳(メタデータ) (2024-12-05T08:56:38Z) - Countering Autonomous Cyber Threats [40.00865970939829]
ファンデーションモデルは、サイバードメイン内で広く、特に二元的関心事を提示します。
近年の研究では、これらの先進的なモデルが攻撃的なサイバースペース操作を通知または独立に実行する可能性を示している。
この研究は、孤立したネットワークでマシンを妥協する能力について、最先端のいくつかのFMを評価し、そのようなAIによる攻撃を倒す防御メカニズムを調査する。
論文 参考訳(メタデータ) (2024-10-23T22:46:44Z) - Smart Grid Security: A Verified Deep Reinforcement Learning Framework to Counter Cyber-Physical Attacks [2.159496955301211]
スマートグリッドは戦略的なサイバー物理攻撃に対して脆弱である。
悪意のある攻撃は、高ワットのIoT(Internet of Things)ボットネットデバイスを使用して電力需要を操作することができる。
グリッドオペレータは、設計段階でサイバー物理攻撃の潜在的なシナリオを見落としている。
本稿では,スマートグリッドに対する攻撃を緩和する安全な深層強化学習(DRL)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T05:26:20Z) - CARACAS: vehiCular ArchitectuRe for detAiled Can Attacks Simulation [37.89720165358964]
本稿では、CANメッセージによるコンポーネント制御やアタックインジェクション機能を含む車両モデルであるCARACASを紹介する。
CarACASは、バッテリ・エレクトリック・ビークル(BEV)モデルを含むこの手法の有効性を示し、2つの異なるシナリオでトルク制御を狙う攻撃に焦点を当てている。
論文 参考訳(メタデータ) (2024-06-11T10:16:55Z) - GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction [53.2306792009435]
我々は,現実の制約に合わせたスマートグリッドの安定性予測システムを対象とした,新たな敵攻撃GAN-GRIDを提案する。
以上の結果から,データやモデル知識を欠いた,安定度モデルのみに武装した敵が,攻撃成功率0.99の安定度でデータを作成できることが判明した。
論文 参考訳(メタデータ) (2024-05-20T14:43:46Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Grid Monitoring with Synchro-Waveform and AI Foundation Model Technologies [41.994460245857404]
本稿では,インバータ資源が支配する将来のグリッドを対象とした次世代グリッド監視制御システムの開発を提唱する。
我々は,高分解能シンクロ波形計測技術を用いた物理ベースのAI基盤モデルを構築し,グリッドのレジリエンスを高め,機能停止による経済的損失を低減する。
論文 参考訳(メタデータ) (2024-03-11T17:28:46Z) - Investigation of Multi-stage Attack and Defense Simulation for Data Synthesis [2.479074862022315]
本研究では,電力網における多段階サイバー攻撃の合成データを生成するモデルを提案する。
攻撃者のステップのシーケンスをモデル化するためにアタックツリーを使用し、ディフェンダーのアクションを組み込むゲーム理論のアプローチを使用する。
論文 参考訳(メタデータ) (2023-12-21T09:54:18Z) - A Variational Autoencoder Framework for Robust, Physics-Informed
Cyberattack Recognition in Industrial Cyber-Physical Systems [2.051548207330147]
我々は、産業制御システムに対する秘密攻撃と呼ばれるサイバー攻撃を検出し、診断し、ローカライズするために使用できるデータ駆動フレームワークを開発する。
このフレームワークは、可変オートエンコーダ(VAE)、リカレントニューラルネットワーク(RNN)、ディープニューラルネットワーク(DNN)を組み合わせたハイブリッド設計である。
論文 参考訳(メタデータ) (2023-10-10T19:07:53Z) - Adaptive Attack Detection in Text Classification: Leveraging Space Exploration Features for Text Sentiment Classification [44.99833362998488]
敵のサンプル検出は、特に急速に進化する攻撃に直面して、適応的なサイバー防御において重要な役割を果たす。
本稿では,BERT(Bidirectional Representations from Transformers)のパワーを活用し,空間探索機能(Space Exploration Features)の概念を提案する。
論文 参考訳(メタデータ) (2023-08-29T23:02:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。