論文の概要: Longitudinal Targeted Minimum Loss-based Estimation with Temporal-Difference Heterogeneous Transformer
- arxiv url: http://arxiv.org/abs/2404.04399v1
- Date: Fri, 5 Apr 2024 20:56:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 21:28:03.989290
- Title: Longitudinal Targeted Minimum Loss-based Estimation with Temporal-Difference Heterogeneous Transformer
- Title(参考訳): 時間差異種変圧器を用いた縦目標最小損失推定
- Authors: Toru Shirakawa, Yi Li, Yulun Wu, Sky Qiu, Yuxuan Li, Mingduo Zhao, Hiroyasu Iso, Mark van der Laan,
- Abstract要約: 縦断的問題設定における動的処理ポリシーの下で, 結果の反実的平均を推定する新しい手法を提案する。
本手法では,時間差学習を用いて学習した異種型埋め込みを用いたトランスフォーマーアーキテクチャを用いる。
また, 統計的理論に基づく95%信頼区間の設定を可能とし, 統計的推測を容易にする。
- 参考スコア(独自算出の注目度): 7.451436112917229
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose Deep Longitudinal Targeted Minimum Loss-based Estimation (Deep LTMLE), a novel approach to estimate the counterfactual mean of outcome under dynamic treatment policies in longitudinal problem settings. Our approach utilizes a transformer architecture with heterogeneous type embedding trained using temporal-difference learning. After obtaining an initial estimate using the transformer, following the targeted minimum loss-based likelihood estimation (TMLE) framework, we statistically corrected for the bias commonly associated with machine learning algorithms. Furthermore, our method also facilitates statistical inference by enabling the provision of 95% confidence intervals grounded in asymptotic statistical theory. Simulation results demonstrate our method's superior performance over existing approaches, particularly in complex, long time-horizon scenarios. It remains effective in small-sample, short-duration contexts, matching the performance of asymptotically efficient estimators. To demonstrate our method in practice, we applied our method to estimate counterfactual mean outcomes for standard versus intensive blood pressure management strategies in a real-world cardiovascular epidemiology cohort study.
- Abstract(参考訳): 本稿では, 長期目標最小損失推定法(Deep LTMLE)を提案する。
本手法では,時間差学習を用いて学習した異種型埋め込みを用いたトランスフォーマーアーキテクチャを用いる。
変圧器を用いて初期推定を行った後、ターゲット最小損失ベース推定(TMLE)フレームワークに従って、機械学習アルゴリズムに共通するバイアスを統計的に補正した。
さらに, この手法は, 漸近的統計理論に基づく95%信頼区間の提供を可能にすることで, 統計的推測を容易にする。
シミュレーションの結果,既存の手法,特に複雑で長い時間軸シナリオよりも優れた性能を示した。
この手法は、漸近的に効率的な推定器の性能と一致する小さなサンプル、短周期の文脈で有効である。
実際の心血管疫学コホート研究において,本手法を応用して,標準血圧と集中血圧管理戦略に対する反ファクトリアル平均値の推定を行った。
関連論文リスト
- Exogenous Matching: Learning Good Proposals for Tractable Counterfactual Estimation [1.9662978733004601]
本稿では, 抽出可能かつ効率的な対実表現推定のための重要サンプリング手法を提案する。
対物推定器の共通上限を最小化することにより、分散最小化問題を条件分布学習問題に変換する。
構造因果モデル (Structure Causal Models, SCM) の様々なタイプと設定による実験による理論的結果の検証と, 対実推定タスクにおける性能の実証を行った。
論文 参考訳(メタデータ) (2024-10-17T03:08:28Z) - Stratified Prediction-Powered Inference for Hybrid Language Model Evaluation [62.2436697657307]
予測駆動推論(英: Prediction-powered Inference, PPI)は、人間ラベル付き限られたデータに基づいて統計的推定を改善する手法である。
我々はStratPPI(Stratified Prediction-Powered Inference)という手法を提案する。
単純なデータ階層化戦略を用いることで,基礎的なPPI推定精度を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-06-06T17:37:39Z) - Transfer Learning for Nonparametric Regression: Non-asymptotic Minimax
Analysis and Adaptive Procedure [5.303044915173525]
我々は,最小限のリスクを対数係数まで達成できる信頼しきい値推定器と呼ばれる新しい推定器を開発した。
次に,パラメータ空間の幅の広い対数係数までの最小リスクを適応的に達成するデータ駆動アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-22T16:24:04Z) - Targeted Machine Learning for Average Causal Effect Estimation Using the
Front-Door Functional [3.0232957374216953]
結果に対する治療の平均因果効果(ACE)を評価することは、しばしば観察研究における要因の相違によって引き起こされる課題を克服することを伴う。
本稿では,目標最小損失推定理論に基づいて,正面基準の新たな推定手法を提案する。
本研究では,早期学業成績が今後の年収に与える影響を明らかにするために,これらの推定装置の適用性を示す。
論文 参考訳(メタデータ) (2023-12-15T22:04:53Z) - A Semiparametric Instrumented Difference-in-Differences Approach to
Policy Learning [2.1989182578668243]
本稿では,最適な治療方針を学習するための汎用機器差分差分法(DiD)アプローチを提案する。
具体的には、並列傾向仮定が成立しない場合、二進楽器変数(IV)を用いて識別結果を確立する。
また、ウォルド推定器、新しい逆確率推定器、半効率的で乗算的な頑健な推定器のクラスを構築する。
論文 参考訳(メタデータ) (2023-10-14T09:38:32Z) - Counterfactual Generative Models for Time-Varying Treatments [15.208067770012283]
公衆衛生・臨床科学における意思決定には, 治療の非現実的な結果の推定が不可欠である。
そこで本研究では, 時間変化処理下で, 反実例を生成できる新しい条件生成フレームワークを提案する。
合成データと実世界のデータの両方を用いて,本手法の徹底的な評価を行う。
論文 参考訳(メタデータ) (2023-05-25T05:45:53Z) - Improved Policy Evaluation for Randomized Trials of Algorithmic Resource
Allocation [54.72195809248172]
提案する新しい概念を応用した新しい推定器を提案する。
我々は,このような推定器が,サンプル手段に基づく一般的な推定器よりも精度が高いことを理論的に証明した。
論文 参考訳(メタデータ) (2023-02-06T05:17:22Z) - Vector-Valued Least-Squares Regression under Output Regularity
Assumptions [73.99064151691597]
最小二乗回帰問題を無限次元出力で解くために,還元ランク法を提案し,解析する。
提案手法の学習バウンダリを導出し、フルランク手法と比較して統計的性能の設定を改善する研究を行う。
論文 参考訳(メタデータ) (2022-11-16T15:07:00Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
最小二乗法のような単純な方法でさえ、データが適応的に収集されるときの非正規な振る舞いを示すことができる。
我々は,これらの分布異常を少なくとも2乗推定で補正するオンラインデバイアス推定器のファミリーを提案する。
我々は,マルチアームバンディット,自己回帰時系列推定,探索による能動的学習などの応用を通して,我々の理論の有用性を実証する。
論文 参考訳(メタデータ) (2021-07-05T21:05:11Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
経験的リスク最小化(Empirical Risk Minimization, ERM)は、機械学習のワークホースであるが、適応的に収集されたデータを使用すると、そのモデルに依存しない保証が失敗する可能性がある。
本研究では,仮説クラス上での損失関数の平均値を最小限に抑えるため,適応的に収集したデータを用いた一般的な重み付きERMアルゴリズムについて検討する。
政策学習では、探索がゼロになるたびに既存の文献のオープンギャップを埋める率-最適後悔保証を提供する。
論文 参考訳(メタデータ) (2021-06-03T09:50:13Z) - CoinDICE: Off-Policy Confidence Interval Estimation [107.86876722777535]
強化学習における高信頼行動非依存のオフ政治評価について検討する。
様々なベンチマークにおいて、信頼区間推定が既存の手法よりも厳密で精度が高いことが示されている。
論文 参考訳(メタデータ) (2020-10-22T12:39:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。