論文の概要: Transfer Learning for Nonparametric Regression: Non-asymptotic Minimax
Analysis and Adaptive Procedure
- arxiv url: http://arxiv.org/abs/2401.12272v1
- Date: Mon, 22 Jan 2024 16:24:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-24 17:57:28.141991
- Title: Transfer Learning for Nonparametric Regression: Non-asymptotic Minimax
Analysis and Adaptive Procedure
- Title(参考訳): 非パラメトリック回帰のための伝達学習--非漸近的ミニマックス解析と適応手順
- Authors: T. Tony Cai and Hongming Pu
- Abstract要約: 我々は,最小限のリスクを対数係数まで達成できる信頼しきい値推定器と呼ばれる新しい推定器を開発した。
次に,パラメータ空間の幅の広い対数係数までの最小リスクを適応的に達成するデータ駆動アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 5.303044915173525
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transfer learning for nonparametric regression is considered. We first study
the non-asymptotic minimax risk for this problem and develop a novel estimator
called the confidence thresholding estimator, which is shown to achieve the
minimax optimal risk up to a logarithmic factor. Our results demonstrate two
unique phenomena in transfer learning: auto-smoothing and super-acceleration,
which differentiate it from nonparametric regression in a traditional setting.
We then propose a data-driven algorithm that adaptively achieves the minimax
risk up to a logarithmic factor across a wide range of parameter spaces.
Simulation studies are conducted to evaluate the numerical performance of the
adaptive transfer learning algorithm, and a real-world example is provided to
demonstrate the benefits of the proposed method.
- Abstract(参考訳): 非パラメトリック回帰のための転送学習を考える。
この問題に対する非漸近的最小リスクをまず研究し、対数係数までの最小リスクを達成できる信頼しきい値推定器と呼ばれる新しい推定器を開発した。
提案手法は,非パラメトリック回帰と区別される自己運動とスーパーアクセラレーションという,トランスファー学習における2つの特異な現象を示す。
次に,パラメータ空間の幅の広い対数係数までの最小リスクを適応的に達成するデータ駆動アルゴリズムを提案する。
適応移動学習アルゴリズムの数値性能を評価するためにシミュレーション研究を行い,提案手法の利点を示す実例を示した。
関連論文リスト
- Risk-averse Learning with Non-Stationary Distributions [18.15046585146849]
本稿では,ランダムなコスト分布が時間とともに変化するリスク-逆オンライン最適化について検討する。
リスクの条件値(CVaR)をリスク尺度として用いたリスク逆目的関数を最小化する。
設計した学習アルゴリズムは,凸関数と凸関数の両方に対して高い確率で線形動的後悔を実現する。
論文 参考訳(メタデータ) (2024-04-03T18:16:47Z) - Semi-Supervised Deep Sobolev Regression: Estimation, Variable Selection
and Beyond [3.782392436834913]
本研究では,半教師付き深部ソボレフ回帰器であるSDOREを提案し,基礎となる回帰関数とその勾配を非パラメトリックに推定する。
我々は、SDOREの収束率を総合的に分析し、回帰関数の最小値の最適値を確立する。
また、重要なドメインシフトが存在する場合でも、関連するプラグイン勾配推定器の収束率を導出する。
論文 参考訳(メタデータ) (2024-01-09T13:10:30Z) - Minimax Optimal Transfer Learning for Kernel-based Nonparametric
Regression [18.240776405802205]
本稿では,非パラメトリック回帰の文脈における伝達学習問題について考察する。
目的は、実用性と理論的保証の間のギャップを埋めることである。
論文 参考訳(メタデータ) (2023-10-21T10:55:31Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
本研究では,所定の点における条件分散の値に関する仮説を検証し,留置手順を開発する。
既存の手法とは異なり、提案手法は分散自体の値だけでなく、対応する分散予測器の不確実性についても考慮することができる。
論文 参考訳(メタデータ) (2023-09-28T13:04:11Z) - Nonparametric Linear Feature Learning in Regression Through Regularisation [0.0]
連立線形特徴学習と非パラメトリック関数推定のための新しい手法を提案する。
代替最小化を用いることで、データを反復的に回転させ、先頭方向との整合性を改善する。
提案手法の予測リスクは,最小限の仮定と明示的なレートで最小限のリスクに収束することを確認した。
論文 参考訳(メタデータ) (2023-07-24T12:52:55Z) - Vector-Valued Least-Squares Regression under Output Regularity
Assumptions [73.99064151691597]
最小二乗回帰問題を無限次元出力で解くために,還元ランク法を提案し,解析する。
提案手法の学習バウンダリを導出し、フルランク手法と比較して統計的性能の設定を改善する研究を行う。
論文 参考訳(メタデータ) (2022-11-16T15:07:00Z) - Gaining Outlier Resistance with Progressive Quantiles: Fast Algorithms
and Theoretical Studies [1.6457778420360534]
任意の損失関数を強固化するために, 外部抵抗推定の枠組みを導入する。
通常のデータセットでは、データ再見積の回数を大幅に削減できるような、開始点の要件を緩和する新しい手法が提案されている。
得られた推定器は、必ずしも大域的でも大域的でもなくても、両方の低次元において最適性を楽しむことができる。
論文 参考訳(メタデータ) (2021-12-15T20:35:21Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
最小二乗法のような単純な方法でさえ、データが適応的に収集されるときの非正規な振る舞いを示すことができる。
我々は,これらの分布異常を少なくとも2乗推定で補正するオンラインデバイアス推定器のファミリーを提案する。
我々は,マルチアームバンディット,自己回帰時系列推定,探索による能動的学習などの応用を通して,我々の理論の有用性を実証する。
論文 参考訳(メタデータ) (2021-07-05T21:05:11Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Reparameterized Variational Divergence Minimization for Stable Imitation [57.06909373038396]
確率的発散の選択における変動が、より高性能なILOアルゴリズムをもたらす可能性について検討する。
本稿では,提案する$f$-divergence最小化フレームワークの課題を軽減するために,逆模倣学習のための再パラメータ化手法を提案する。
経験的に、我々の設計選択は、ベースラインアプローチより優れ、低次元連続制御タスクにおける専門家のパフォーマンスとより密に適合するIOOアルゴリズムを許容することを示した。
論文 参考訳(メタデータ) (2020-06-18T19:04:09Z) - Deep Dimension Reduction for Supervised Representation Learning [51.10448064423656]
本研究は,本質的な特徴を持つ学習表現の次元削減手法を提案する。
提案手法は, 十分次元還元法の非パラメトリック一般化である。
推定された深度非パラメトリック表現は、その余剰リスクが0に収束するという意味で一貫したものであることを示す。
論文 参考訳(メタデータ) (2020-06-10T14:47:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。