論文の概要: Towards Better Graph Neural Network-based Fault Localization Through Enhanced Code Representation
- arxiv url: http://arxiv.org/abs/2404.04496v5
- Date: Tue, 30 Apr 2024 13:42:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 13:06:54.072237
- Title: Towards Better Graph Neural Network-based Fault Localization Through Enhanced Code Representation
- Title(参考訳): 拡張コード表現によるグラフニューラルネットワークによる障害位置推定の改善に向けて
- Authors: Md Nakhla Rafi, Dong Jae Kim, An Ran Chen, Tse-Hsun Chen, Shaowei Wang,
- Abstract要約: 本稿では,グラフ表現の複雑性をノードやエッジで70%削減する新しいグラフ表現DepGraphを提案する。
Defects4j 2.0.0 を用いてDepGraph を評価し,Top-1 では 20% 以上の故障が検出され,平均一位 (MFR) と平均平均一位 (MAR) が50%以上向上した。
- 参考スコア(独自算出の注目度): 8.647406441990396
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic software fault localization plays an important role in software quality assurance by pinpointing faulty locations for easier debugging. Coverage-based fault localization, a widely used technique, employs statistics on coverage spectra to rank code based on suspiciousness scores. However, the rigidity of statistical approaches calls for learning-based techniques. Amongst all, Grace, a graph-neural network (GNN) based technique has achieved state-of-the-art due to its capacity to preserve coverage spectra, i.e., test-to-source coverage relationships, as precise abstract syntax-enhanced graph representation, mitigating the limitation of other learning-based technique which compresses the feature representation. However, such representation struggles with scalability due to the increasing complexity of software and associated coverage spectra and AST graphs. In this work, we proposed a new graph representation, DepGraph, that reduces the complexity of the graph representation by 70% in nodes and edges by integrating interprocedural call graph in the graph representation of the code. Moreover, we integrate additional features such as code change information in the graph as attributes so the model can leverage rich historical project data. We evaluate DepGraph using Defects4j 2.0.0, and it outperforms Grace by locating 20% more faults in Top-1 and improving the Mean First Rank (MFR) and the Mean Average Rank (MAR) by over 50% while decreasing GPU memory usage by 44% and training/inference time by 85%. Additionally, in cross-project settings, DepGraph surpasses the state-of-the-art baseline with a 42% higher Top-1 accuracy, and 68% and 65% improvement in MFR and MAR, respectively. Our study demonstrates DepGraph's robustness, achieving state-of-the-art accuracy and scalability for future extension and adoption.
- Abstract(参考訳): 自動ソフトウェアフォールトローカライゼーションは、デバッグを容易にするために故障箇所をピンポイントすることで、ソフトウェア品質保証において重要な役割を果たす。
広く使われている手法であるカバレッジベースのフォールトローカライゼーションでは、被疑点スコアに基づいたコードランク付けにカバレッジスペクトルの統計を用いる。
しかし、統計的アプローチの剛性は、学習に基づく技術を要求する。
中でもグラフニューラルネットワーク(GNN)に基づくグラフニューラルネットワーク(Grace)は,特徴表現を圧縮する他の学習手法の制限を緩和する,厳密な抽象構文強化グラフ表現として,テストとソースのカバレッジ関係を保存する能力によって,最先端技術を実現している。
しかし、そのような表現は、ソフトウェアと関連するカバレッジスペクトルとASTグラフの複雑さの増大によりスケーラビリティに苦慮している。
本研究では,ノードやエッジにおけるグラフ表現の複雑さを70%削減する新しいグラフ表現であるDepGraphを提案する。
さらに,属性としてグラフ内のコード変更情報などの付加的機能を統合し,そのモデルが豊富な歴史的プロジェクトデータを活用できるようにする。
Defects4j 2.0.0を用いてDepGraphを評価し,Top-1における20%以上の障害の所在と平均一位と平均平均ランク(MAR)を50%以上改善し,GPUメモリ使用率を44%削減し,トレーニング/推論時間を85%向上させた。
さらに、クロスプロジェクト環境では、DepGraphは最先端のベースラインを超え、Top-1の精度が42%、MFRとMARが68%、MARが65%向上している。
我々の研究は、DepGraphの堅牢性、最先端の精度、将来の拡張と採用のためのスケーラビリティを実証する。
関連論文リスト
- Chasing Fairness in Graphs: A GNN Architecture Perspective [73.43111851492593]
グラフニューラルネットワーク(GNN)の統一最適化フレームワーク内で設計されたtextsfFair textsfMessage textsfPassing(FMP)を提案する。
FMPでは、アグリゲーションがまず隣人の情報を活用するために採用され、バイアス軽減ステップにより、人口集団ノードのプレゼンテーションセンタが明示的に統合される。
ノード分類タスクの実験により、提案されたFMPは、実世界の3つのデータセットの公平性と正確性の観点から、いくつかのベースラインを上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-19T18:00:15Z) - Feature propagation as self-supervision signals on graphs [0.0]
正規化グラフ情報最大(RGI)は、ノードレベルの自己教師型学習のためのシンプルだが効果的なフレームワークである。
RGIは,その単純さに拘わらず,最先端のパフォーマンスを実現することができることを示す。
論文 参考訳(メタデータ) (2023-03-15T14:20:06Z) - Features Based Adaptive Augmentation for Graph Contrastive Learning [0.0]
自己監督学習は、グラフ表現学習における高価なアノテーションの必要性を排除することを目的としている。
機能に基づく適応拡張(FebAA)アプローチを導入し、潜在的に影響力のある機能を特定し保存する。
8つのグラフ表現学習のベンチマークデータセットにおいて,GRACEとBGRLの精度を向上させることに成功した。
論文 参考訳(メタデータ) (2022-07-05T03:41:20Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
グラフコントラスト学習(GCL)は、手作業によるアノテーションの監督なしに、グラフ表現学習(GRL)において有望な性能を示した。
本稿では,この課題に対処するため,グラフココというグラフ補完型コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T02:58:36Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
我々は、新しい自己教師型学習フレームワーク、グラフ情報支援ノード機能exTraction (GIANT)を提案する。
GIANT は eXtreme Multi-label Classification (XMC) 形式を利用しており、これはグラフ情報に基づいた言語モデルの微調整に不可欠である。
我々は,Open Graph Benchmarkデータセット上での標準GNNパイプラインよりもGIANTの方が優れた性能を示す。
論文 参考訳(メタデータ) (2021-10-29T19:55:12Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
GNNを反転させてトレーニンググラフのプライベートグラフデータを抽出することを目的とした textbfGraph textbfModel textbfInversion attack (GraphMI) を提案する。
具体的には,グラフ特徴の空間性と滑らかさを保ちながら,グラフエッジの離散性に対処する勾配モジュールを提案する。
エッジ推論のためのグラフトポロジ、ノード属性、ターゲットモデルパラメータを効率的に活用するグラフ自動エンコーダモジュールを設計する。
論文 参考訳(メタデータ) (2021-06-05T07:07:52Z) - Hierarchical Adaptive Pooling by Capturing High-order Dependency for
Graph Representation Learning [18.423192209359158]
グラフニューラルネットワーク(GNN)はノードレベルのグラフ表現学習タスクでグラフ構造化データを扱うのに十分成熟していることが証明されている。
本稿では,グラフ構造に適応する階層型グラフレベルの表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-13T06:22:24Z) - Sub-graph Contrast for Scalable Self-Supervised Graph Representation
Learning [21.0019144298605]
既存のグラフニューラルネットワークは、計算量やメモリコストが限られているため、完全なグラフデータで供給される。
textscSubg-Conは、中央ノードとそのサンプルサブグラフ間の強い相関を利用して、地域構造情報をキャプチャすることで提案される。
既存のグラフ表現学習アプローチと比較して、textscSubg-Conは、より弱い監視要件、モデル学習のスケーラビリティ、並列化において、顕著なパフォーマンス上のアドバンテージを持っています。
論文 参考訳(メタデータ) (2020-09-22T01:58:19Z) - Heuristic Semi-Supervised Learning for Graph Generation Inspired by
Electoral College [80.67842220664231]
本稿では,新たなノードやエッジを自動的に拡張して,高密度サブグラフ内のラベル類似性を向上する,新しい前処理手法であるElectoral College(ELCO)を提案する。
テストされたすべての設定において、我々の手法はベースモデルの平均スコアを4.7ポイントの広いマージンで引き上げるとともに、常に最先端のモデルよりも優れています。
論文 参考訳(メタデータ) (2020-06-10T14:48:48Z) - GraphGen: A Scalable Approach to Domain-agnostic Labeled Graph
Generation [5.560715621814096]
グラフ生成モデルは、データマイニングの文献で広く研究されている。
最近の技術は、データから直接この分布を学習する方向に移行している。
本研究では、これらの制限をすべて克服するために、GraphGenと呼ばれるドメインに依存しないテクニックを開発します。
論文 参考訳(メタデータ) (2020-01-22T18:07:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。