論文の概要: Keep It Simple: Towards Accurate Vulnerability Detection for Large Code Graphs
- arxiv url: http://arxiv.org/abs/2412.10164v1
- Date: Fri, 13 Dec 2024 14:27:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:03:47.046030
- Title: Keep It Simple: Towards Accurate Vulnerability Detection for Large Code Graphs
- Title(参考訳): シンプルにしておく - 大規模コードグラフの正確な脆弱性検出に向けて
- Authors: Xin Peng, Shangwen Wang, Yihao Qin, Bo Lin, Liqian Chen, Xiaoguang Mao,
- Abstract要約: 本稿では,階層グラフの洗練と文脈対応グラフ表現学習を具現化した新たな脆弱性検出手法であるANGLEを提案する。
本手法は, 精度とF1スコアの点で, 他のいくつかのベースラインを著しく上回っている。
大きなコードグラフでは、ANGLEは最先端のAMPLEに比べて34.27%-161.93%の精度向上を実現している。
- 参考スコア(独自算出の注目度): 6.236203127696138
- License:
- Abstract: Software vulnerability detection is crucial for high-quality software development. Recently, some studies utilizing Graph Neural Networks (GNNs) to learn the graph representation of code in vulnerability detection tasks have achieved remarkable success. However, existing graph-based approaches mainly face two limitations that prevent them from generalizing well to large code graphs: (1) the interference of noise information in the code graph; (2) the difficulty in capturing long-distance dependencies within the graph. To mitigate these problems, we propose a novel vulnerability detection method, ANGLE, whose novelty mainly embodies the hierarchical graph refinement and context-aware graph representation learning. The former hierarchically filters redundant information in the code graph, thereby reducing the size of the graph, while the latter collaboratively employs the Graph Transformer and GNN to learn code graph representations from both the global and local perspectives, thus capturing long-distance dependencies. Extensive experiments demonstrate promising results on three widely used benchmark datasets: our method significantly outperforms several other baselines in terms of the accuracy and F1 score. Particularly, in large code graphs, ANGLE achieves an improvement in accuracy of 34.27%-161.93% compared to the state-of-the-art method, AMPLE. Such results demonstrate the effectiveness of ANGLE in vulnerability detection tasks.
- Abstract(参考訳): ソフトウェア脆弱性の検出は高品質なソフトウェア開発に不可欠である。
近年,脆弱性検出タスクにおいて,グラフニューラルネットワーク(GNN)を用いてコードのグラフ表現を学習する研究が目覚ましい成功を収めている。
しかし、既存のグラフベースのアプローチは、(1)コードグラフにおけるノイズ情報の干渉、(2)グラフ内の長距離依存を捉えることの難しさ、という2つの制限に主に直面している。
これらの問題を緩和するために,階層グラフの洗練と文脈対応グラフ表現学習を主体とした新しい脆弱性検出手法であるANGLEを提案する。
前者は、コードグラフ内の冗長な情報を階層的にフィルタリングし、グラフのサイズを小さくする一方、後者はグラフ変換器とGNNを使用して、グローバルとローカルの両方の観点からコードグラフ表現を学習し、長距離依存をキャプチャする。
我々の手法は精度とF1スコアの点で他のいくつかのベースラインを大きく上回っている。
特に大きなコードグラフでは、ANGLEは最先端のAMPLEに比べて34.27%-161.93%の精度向上を実現している。
このような結果から,脆弱性検出タスクにおけるANGLEの有効性が示された。
関連論文リスト
- Guarding Graph Neural Networks for Unsupervised Graph Anomaly Detection [16.485082741239808]
教師なしグラフ異常検出は、ラベルを使わずにグラフの多数から逸脱する稀なパターンを特定することを目的としている。
近年,グラフニューラルネットワーク(GNN)を用いて効率的なノード表現を学習している。
教師なしグラフ異常検出(G3AD)のためのグラフニューラルネットワークのガードフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-25T07:09:05Z) - Three Revisits to Node-Level Graph Anomaly Detection: Outliers, Message
Passing and Hyperbolic Neural Networks [9.708651460086916]
本稿では,教師なしノードレベルのグラフ異常検出タスクに対するデータセットとアプローチを再検討する。
まず,グラフデータセットにおいて,より多様なグラフベースの異常を発生させるアウトリーインジェクション手法を提案する。
第2に、メッセージパッシングを利用した手法を非使用者と比較し、予期せぬ性能低下を明らかにした。
論文 参考訳(メタデータ) (2024-03-06T19:42:34Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
自己指導型自己学習(BOURNE)に基づく新しい統合グラフ異常検出フレームワークを提案する。
ノードとエッジ間のコンテキスト埋め込みを交換することで、ノードとエッジの異常を相互に検出できる。
BOURNEは、負のサンプリングを必要としないため、大きなグラフを扱う際の効率を高めることができる。
論文 参考訳(メタデータ) (2023-07-28T00:44:57Z) - DSHGT: Dual-Supervisors Heterogeneous Graph Transformer -- A pioneer study of using heterogeneous graph learning for detecting software vulnerabilities [12.460745260973837]
脆弱性検出はソフトウェアセキュリティにおいて重要な問題であり、学術と産業の両方から注目を集めている。
ディープラーニング、特にグラフニューラルネットワーク(GNN)の最近の進歩は、幅広いソフトウェア脆弱性の自動検出の可能性を明らかにしている。
この研究において、我々はCode Property Graphという形で異種グラフ表現を最初に探求した1人です。
論文 参考訳(メタデータ) (2023-06-02T08:57:13Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
我々は、弱い情報(GLWI)を用いたグラフ学習問題に対する原則的アプローチを開発する。
非完全構造を持つ入力グラフ上で長距離情報伝搬を行うデュアルチャネルGNNフレームワークであるD$2$PTを提案するが、グローバルな意味的類似性を符号化するグローバルグラフも提案する。
論文 参考訳(メタデータ) (2023-05-29T04:51:09Z) - Benchmarking Node Outlier Detection on Graphs [90.29966986023403]
グラフの外れ値検出は、多くのアプリケーションにおいて、新しいが重要な機械学習タスクである。
UNODと呼ばれるグラフに対して、最初の包括的教師なしノード外乱検出ベンチマークを示す。
論文 参考訳(メタデータ) (2022-06-21T01:46:38Z) - LSP : Acceleration and Regularization of Graph Neural Networks via
Locality Sensitive Pruning of Graphs [2.4250821950628234]
グラフニューラルネットワーク(GNN)は、グラフ関連のタスクのための非常に成功したツールとして登場した。
大きなグラフは、性能を損なうことなく取り除くことができる多くの冗長なコンポーネントを含むことが多い。
そこで我々はLocality-Sensitive Hashingに基づくグラフプルーニングのためのLocality-Sensitive Pruning(LSP)という体系的手法を提案する。
論文 参考訳(メタデータ) (2021-11-10T14:12:28Z) - Deep Fraud Detection on Non-attributed Graph [61.636677596161235]
グラフニューラルネットワーク(GNN)は不正検出に強い性能を示している。
ラベル付きデータは大規模な産業問題、特に不正検出には不十分である。
よりラベルのないデータを活用するための新しいグラフ事前学習戦略を提案する。
論文 参考訳(メタデータ) (2021-10-04T03:42:09Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
グラフ組み込み数ショット学習に関する包括的な研究を紹介します。
本稿では,ラベル間のグラフ情報の組み込みによる影響をより深く理解できるグラフ正規化手法を提案する。
提案手法は,Mini-ImageNetで最大2%,ImageNet-FSで6.7%の性能向上を実現する。
論文 参考訳(メタデータ) (2021-02-14T05:28:13Z) - Graph Information Bottleneck for Subgraph Recognition [103.37499715761784]
本稿では,深層グラフ学習における部分グラフ認識問題に対するグラフ情報ブートネック(GIB)の枠組みを提案する。
この枠組みの下では、最大情報でありながら圧縮的な部分グラフ(IB-subgraph)を認識できる。
IB-サブグラフの特性を3つのアプリケーションシナリオで評価する。
論文 参考訳(メタデータ) (2020-10-12T09:32:20Z) - Understanding Coarsening for Embedding Large-Scale Graphs [3.6739949215165164]
機械学習(ML)アルゴリズムによるグラフの適切な解析は、研究や産業の多くの分野において、より深い洞察をもたらす可能性がある。
グラフデータの不規則構造は、グラフ上でMLタスクを実行するための障害を構成する。
本研究では, 粗大化品質が埋込み性能に及ぼす影響を, 速度と精度の両方で解析する。
論文 参考訳(メタデータ) (2020-09-10T15:06:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。