論文の概要: MedIAnomaly: A comparative study of anomaly detection in medical images
- arxiv url: http://arxiv.org/abs/2404.04518v2
- Date: Mon, 22 Jul 2024 05:24:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 02:01:16.653219
- Title: MedIAnomaly: A comparative study of anomaly detection in medical images
- Title(参考訳): MedIAnomaly:医療画像における異常検出の比較研究
- Authors: Yu Cai, Weiwen Zhang, Hao Chen, Kwang-Ting Cheng,
- Abstract要約: 異常検出(AD)は、期待される正常なパターンから逸脱する異常なサンプルを検出することを目的としている。
医療用AD法は多岐にわたるが, 公平かつ包括的評価の欠如が指摘されている。
本稿では,比較を統一したベンチマークを構築した。
- 参考スコア(独自算出の注目度): 26.319602363581442
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection (AD) aims at detecting abnormal samples that deviate from the expected normal patterns. Generally, it can be trained merely on normal data, without a requirement for abnormal samples, and thereby plays an important role in the recognition of rare diseases and health screening in the medical domain. Despite the emergence of numerous methods for medical AD, we observe a lack of a fair and comprehensive evaluation, which causes ambiguous conclusions and hinders the development of this field. To address this problem, this paper builds a benchmark with unified comparison. Seven medical datasets with five image modalities, including chest X-rays, brain MRIs, retinal fundus images, dermatoscopic images, and histopathology whole slide images, are curated for extensive evaluation. Thirty typical AD methods, including reconstruction and self-supervised learning-based methods, are involved in comparison of image-level anomaly classification and pixel-level anomaly segmentation. Furthermore, for the first time, we formally explore the effect of key components in existing methods, clearly revealing unresolved challenges and potential future directions. The datasets and code are available at \url{https://github.com/caiyu6666/MedIAnomaly}.
- Abstract(参考訳): 異常検出(AD)は、期待される正常なパターンから逸脱する異常なサンプルを検出することを目的としている。
一般的には、正常なデータに基づいて、異常なサンプルを必要とせずに訓練することができるため、医療領域における稀な疾患の認識や健康診断において重要な役割を果たす。
医学的ADのための多くの方法が出現したにもかかわらず、公平で包括的な評価が欠如しており、不明瞭な結論を導き、この分野の発展を妨げている。
この問題に対処するため,本論文では,比較を統一したベンチマークを構築した。
胸部X線, 脳MRI, 網膜基底像, 皮膚内視鏡像, 病理組織像を含む5つの画像モダリティを持つ7つの医用データセットを, 広範囲な評価のためにキュレートした。
画像レベルの異常分類と画素レベルの異常セグメンテーションの比較には,再構成法や自己教師型学習法を含む30種類のAD手法が関与している。
さらに,既存の手法におけるキーコンポーネントの効果を公式に検討し,未解決の課題と今後の方向性を明らかにした。
データセットとコードは \url{https://github.com/caiyu6666/MedIAnomaly} で公開されている。
関連論文リスト
- Spatial-aware Attention Generative Adversarial Network for Semi-supervised Anomaly Detection in Medical Image [63.59114880750643]
本稿では,一級半教師付き健康画像生成のための空間意識生成ネットワーク(SAGAN)について紹介する。
SAGANは、正常な画像の復元と擬似異常画像の復元によって導かれる、ラベルのないデータに対応する高品質な健康画像を生成する。
3つの医学データセットに対する大規模な実験は、提案されたSAGANが最先端の手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2024-05-21T15:41:34Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - AnoDODE: Anomaly Detection with Diffusion ODE [0.0]
異常検出は、データセットの大部分から著しく逸脱する非定型的なデータサンプルを特定するプロセスである。
医用画像から抽出した特徴量の密度を推定し,拡散モードに基づく新しい異常検出手法を提案する。
提案手法は異常を識別するだけでなく,画像レベルと画素レベルでの解釈性も提供する。
論文 参考訳(メタデータ) (2023-10-10T08:44:47Z) - BMAD: Benchmarks for Medical Anomaly Detection [51.22159321912891]
異常検出(AD)は、機械学習とコンピュータビジョンの基本的な研究課題である。
医用画像では、ADはまれな疾患や病態を示す可能性のある異常の検出と診断に特に重要である。
医用画像の異常検出方法を評価するための総合評価ベンチマークを導入する。
論文 参考訳(メタデータ) (2023-06-20T20:23:46Z) - Dual-distribution discrepancy with self-supervised refinement for
anomaly detection in medical images [29.57501199670898]
我々は、既知の正規画像と未ラベル画像を利用するために、一級半教師付き学習(OC-SSL)を導入する。
再構成ネットワークのアンサンブルは、正規画像の分布と、正規画像と未ラベル画像の両方の分布をモデル化するように設計されている。
本稿では,異常を直接検出するのではなく,異常スコアを改良する自己教師型学習の新しい視点を提案する。
論文 参考訳(メタデータ) (2022-10-09T11:18:45Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
臨床皮膚画像から機械学習に基づく悪性度予測と病変の同定を検討する。
まず, サブタイプや悪性度に関わらず画像に存在するすべての病変を同定し, その悪性度を推定し, 凝集により, 画像レベルの悪性度も生成する。
論文 参考訳(メタデータ) (2021-04-02T20:52:05Z) - Collaborative Unsupervised Domain Adaptation for Medical Image Diagnosis [102.40869566439514]
我々は、Unsupervised Domain Adaptation (UDA)を通じて、対象タスクにおける学習を支援するために、関連ドメインからの豊富なラベル付きデータを活用しようとしている。
クリーンなラベル付きデータやサンプルを仮定するほとんどのUDAメソッドが等しく転送可能であるのとは異なり、協調的教師なしドメイン適応アルゴリズムを革新的に提案する。
提案手法の一般化性能を理論的に解析し,医用画像と一般画像の両方で実験的に評価する。
論文 参考訳(メタデータ) (2020-07-05T11:49:17Z) - Anomaly Detection in Medical Imaging with Deep Perceptual Autoencoders [1.7277957019593995]
画像異常検出の新しい強力な手法を提案する。
これは、再設計されたトレーニングパイプラインを備えた古典的なオートエンコーダアプローチに依存している。
複雑な医用画像解析タスクにおける最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2020-06-23T18:45:55Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z) - A versatile anomaly detection method for medical images with a
flow-based generative model in semi-supervision setting [0.0]
本稿では,2つの訓練されたフローベース生成モデルに基づく異常検出手法を提案する。
この方法では、後続確率は任意の画像に対する正規度計量として計算できる。
胸部X線写真(CXR)と脳CT(BCT)の2種類の医用画像を用いて評価した。
論文 参考訳(メタデータ) (2020-01-22T02:01:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。