論文の概要: Analyzing LLM Usage in an Advanced Computing Class in India
- arxiv url: http://arxiv.org/abs/2404.04603v2
- Date: Thu, 25 Jul 2024 05:22:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 19:07:19.699776
- Title: Analyzing LLM Usage in an Advanced Computing Class in India
- Title(参考訳): インドにおける高度なコンピューティング授業におけるLLM利用の分析
- Authors: Anupam Garg, Aryaman Raina, Aryan Gupta, Jaskaran Singh, Manav Saini, Prachi Iiitd, Ronit Mehta, Rupin Oberoi, Sachin Sharma, Samyak Jain, Sarthak Tyagi, Utkarsh Arora, Dhruv Kumar,
- Abstract要約: 本研究では,大規模言語モデル(LLM)を,大学院生や大学院生が高度なコンピューティングクラスにおけるプログラミング課題に活用することを検討した。
インド大学の分散システムクラスから411名の学生を対象に,総合的な分析を行った。
- 参考スコア(独自算出の注目度): 4.580708389528142
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study examines the use of large language models (LLMs) by undergraduate and graduate students for programming assignments in advanced computing classes. Unlike existing research, which primarily focuses on introductory classes and lacks in-depth analysis of actual student-LLM interactions, our work fills this gap. We conducted a comprehensive analysis involving 411 students from a Distributed Systems class at an Indian university, where they completed three programming assignments and shared their experiences through Google Form surveys. Our findings reveal that students leveraged LLMs for a variety of tasks, including code generation, debugging, conceptual inquiries, and test case creation. They employed a spectrum of prompting strategies, ranging from basic contextual prompts to advanced techniques like chain-of-thought prompting and iterative refinement. While students generally viewed LLMs as beneficial for enhancing productivity and learning, we noted a concerning trend of over-reliance, with many students submitting entire assignment descriptions to obtain complete solutions. Given the increasing use of LLMs in the software industry, our study highlights the need to update undergraduate curricula to include training on effective prompting strategies and to raise awareness about the benefits and potential drawbacks of LLM usage in academic settings.
- Abstract(参考訳): 本研究では,大規模言語モデル(LLM)を,大学院生や大学院生が高度なコンピューティングクラスにおけるプログラミング課題に活用することを検討した。
主に入門授業に焦点をあて、実際の学生とLLMの相互作用の詳細な分析を欠いている既存の研究とは異なり、我々の研究はこのギャップを埋めている。
インド大学の分散システムクラスから411人の学生を対象に、総合的な分析を行い、3つのプログラミング課題を完了し、Google Formサーベイを通じて経験を共有した。
その結果, 学生はコード生成, デバッグ, 概念質問, テストケース作成など, 様々なタスクにLLMを活用していることがわかった。
彼らは、基本的な文脈的プロンプトから、連鎖的プロンプトや反復的洗練のような高度な技術まで、一連のプロンプト戦略を採用した。
学生は一般的に,LLMを生産性の向上と学習に役立つと考えているが,信頼性の過度な傾向が指摘され,多くの学生が全課題記述を提出して完全なソリューションを得た。
ソフトウェア産業におけるLLMの利用の増加を踏まえ,本研究は,効果的なプロンプト戦略のトレーニングを含む学部カリキュラムの更新と,学術的環境におけるLLM利用のメリットと潜在的な欠点に対する認識を高めることの必要性を強調した。
関連論文リスト
- Enhancing Computer Programming Education with LLMs: A Study on Effective Prompt Engineering for Python Code Generation [6.267144136593821]
大規模言語モデル(LLM)とプロンプトエンジニアリングは、パーソナライズされた教育を通じてコンピュータプログラミング教育を前進させる大きな可能性を秘めている。
本稿では, 多様な教育ニーズに合わせた迅速な技術戦略の体系的分類, LLMの本来の能力を超えた複雑な問題を解決する能力の強化, これらの戦略の評価と実装のための堅牢な枠組みの確立, の3つの重要な研究課題について考察する。
GPT-4o, GPT-4o, Llama3-8b, Mixtral-8x7b を用いたLeetCode や USACO などのデータセットによる実験により, GPT-4o は特に "multi-step" で他より一貫して優れていることが明らかになった。
論文 参考訳(メタデータ) (2024-07-07T16:41:07Z) - When Search Engine Services meet Large Language Models: Visions and Challenges [53.32948540004658]
本稿では,大規模言語モデルと検索エンジンの統合が,両者の相互に利益をもたらすかどうかを詳細に検討する。
LLM(Search4LLM)の改良と,LLM(LLM4Search)を用いた検索エンジン機能の向上という,2つの主要な領域に注目した。
論文 参考訳(メタデータ) (2024-06-28T03:52:13Z) - Can LLMs Solve longer Math Word Problems Better? [47.227621867242]
大規模言語モデル(LLM)の能力評価にはMWP(Math Word Problems)が不可欠である
この研究は、文脈長一般化可能性(CoLeG)の探索の先駆者である。
これらの問題を解決する上で, LLMの有効性とレジリエンスを評価するために, 2つの新しい指標が提案されている。
論文 参考訳(メタデータ) (2024-05-23T17:13:50Z) - An Exploratory Study on Upper-Level Computing Students' Use of Large Language Models as Tools in a Semester-Long Project [2.7325338323814328]
本研究の目的は、学期間ソフトウェアエンジニアリングプロジェクトにおいて、計算学生のLSMの使用経験とアプローチを検討することである。
我々はPurdue大学の上級ソフトウェア工学コースからデータを収集した。
本研究では,学生の利用パターンや学習成果に関連するテーマを特定するために,データを分析した。
論文 参考訳(メタデータ) (2024-03-27T15:21:58Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - An Empirical Study on Usage and Perceptions of LLMs in a Software
Engineering Project [1.433758865948252]
大規模言語モデル(LLM)は人工知能の飛躍であり、人間の言語を用いたタスクに優れる。
本稿では、AI生成したコードを分析し、コード生成に使用するプロンプトと人間の介入レベルを分析し、コードをコードベースに統合する。
ソフトウェア開発の初期段階において,LSMが重要な役割を担っていることが示唆された。
論文 参考訳(メタデータ) (2024-01-29T14:32:32Z) - "Which LLM should I use?": Evaluating LLMs for tasks performed by Undergraduate Computer Science Students [2.6043678412433713]
本研究では,大学生に共通する作業における大規模言語モデル(LLM)の有効性を評価する。
私たちの研究は、Google Bard、ChatGPT(3.5)、GitHub Copilot Chat、Microsoft Copilot Chatなど、公開されているLLMのいくつかを体系的に評価しています。
論文 参考訳(メタデータ) (2024-01-22T15:11:36Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
LLM(Large Language Models)の急速な成長は、様々なドメインを変換する原動力となっている。
本稿では,LLMのエンドツーエンドのアルゴリズム開発に不可欠な多面的効率性について検討する。
論文 参考訳(メタデータ) (2023-12-01T16:00:25Z) - Towards an Understanding of Large Language Models in Software Engineering Tasks [29.30433406449331]
大規模言語モデル(LLM)は、テキスト生成や推論タスクにおける驚くべきパフォーマンスのために、広く注目を集め、研究している。
コード生成などのソフトウェア工学タスクにおけるLLMの評価と最適化が研究の焦点となっている。
本稿では,LLMとソフトウェア工学を組み合わせた研究・製品について包括的に検討・検討する。
論文 参考訳(メタデータ) (2023-08-22T12:37:29Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
大規模言語モデル(LLM)は、最近自然言語処理タスクにおいて顕著な機能を示した。
本稿では, LLM関連概念の幅広い範囲について, 既存の文献について概説する。
論文 参考訳(メタデータ) (2023-07-12T20:01:52Z) - Multi-Task Instruction Tuning of LLaMa for Specific Scenarios: A
Preliminary Study on Writing Assistance [60.40541387785977]
小さな基礎モデルは、命令駆動データを用いて微調整された場合、多様なタスクに対処する際、顕著な習熟度を示すことができる。
本研究は, 汎用的な指導よりも, 1つないし数つの特定のタスクに主眼を置いている, 実践的な問題設定について検討する。
実験結果から,命令データに対する微調整LLaMAは,タスクの記述能力を大幅に向上することが示された。
論文 参考訳(メタデータ) (2023-05-22T16:56:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。