Binary Classifier Optimization for Large Language Model Alignment
- URL: http://arxiv.org/abs/2404.04656v1
- Date: Sat, 6 Apr 2024 15:20:59 GMT
- Title: Binary Classifier Optimization for Large Language Model Alignment
- Authors: Seungjae Jung, Gunsoo Han, Daniel Wontae Nam, Kyoung-Woon On,
- Abstract summary: We present theoretical foundations to explain the successful alignment achieved through binary signals.
We identify two techniques for effective alignment: reward shift and underlying distribution matching.
Our model consistently demonstrates effective and robust alignment across two base LLMs and three different binary signal datasets.
- Score: 4.61411484523337
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Aligning Large Language Models (LLMs) to human preferences through preference optimization has been crucial but labor-intensive, necessitating for each prompt a comparison of both a chosen and a rejected text completion by evaluators. Recently, Kahneman-Tversky Optimization (KTO) has demonstrated that LLMs can be aligned using merely binary "thumbs-up" or "thumbs-down" signals on each prompt-completion pair. In this paper, we present theoretical foundations to explain the successful alignment achieved through these binary signals. Our analysis uncovers a new perspective: optimizing a binary classifier, whose logit is a reward, implicitly induces minimizing the Direct Preference Optimization (DPO) loss. In the process of this discovery, we identified two techniques for effective alignment: reward shift and underlying distribution matching. Consequently, we propose a new algorithm, \textit{Binary Classifier Optimization}, that integrates the techniques. We validate our methodology in two settings: first, on a paired preference dataset, where our method performs on par with DPO and KTO; and second, on binary signal datasets simulating real-world conditions with divergent underlying distributions between thumbs-up and thumbs-down data. Our model consistently demonstrates effective and robust alignment across two base LLMs and three different binary signal datasets, showcasing the strength of our approach to learning from binary feedback.
Related papers
- Calibrated Multi-Preference Optimization for Aligning Diffusion Models [92.90660301195396]
Calibrated Preference Optimization (CaPO) is a novel method to align text-to-image (T2I) diffusion models.
CaPO incorporates the general preference from multiple reward models without human annotated data.
Experimental results show that CaPO consistently outperforms prior methods.
arXiv Detail & Related papers (2025-02-04T18:59:23Z) - Graph-Sequential Alignment and Uniformity: Toward Enhanced Recommendation Systems [51.716704243764994]
Our framework uses Graph Neural Network (GNN)-based and sequential recommenders as separate submodules while sharing a unified embedding space optimized jointly.
Experiments on three real-world datasets demonstrate that the proposed method significantly outperforms using either approach alone.
arXiv Detail & Related papers (2024-12-05T15:59:05Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - Beyond Imitation: Leveraging Fine-grained Quality Signals for Alignment [105.34140537748546]
We propose an improved alignment approach named FIGA. Different from prior methods, we incorporate fine-grained quality signals that are derived by contrasting good and bad responses.
Our approach has made two major contributions. Firstly, we curate a refined alignment dataset that pairs initial responses and the corresponding revised ones.
Secondly, we devise a new loss function can leverage fine-grained quality signals to instruct the learning of LLMs for alignment.
arXiv Detail & Related papers (2023-11-07T15:36:40Z) - Bidirectional Looking with A Novel Double Exponential Moving Average to
Adaptive and Non-adaptive Momentum Optimizers [109.52244418498974]
We propose a novel textscAdmeta (textbfADouble exponential textbfMov averagtextbfE textbfAdaptive and non-adaptive momentum) framework.
We provide two implementations, textscAdmetaR and textscAdmetaS, the former based on RAdam and the latter based on SGDM.
arXiv Detail & Related papers (2023-07-02T18:16:06Z) - FOSI: Hybrid First and Second Order Optimization [11.447526245792154]
We present FOSI, a novel metaalgorithm that improves the performance of any base first-order by efficiently incorporating second-order information during the optimization process.
Our empirical evaluation demonstrates that FOSI improves the convergence rate and optimization time of first-order methods such as Heavy-Ball and Adam, and outperforms second-order methods (K-FAC and L-BFGS)
arXiv Detail & Related papers (2023-02-16T18:45:46Z) - AdaBin: Improving Binary Neural Networks with Adaptive Binary Sets [27.022212653067367]
This paper studies the Binary Neural Networks (BNNs) in which weights and activations are both binarized into 1-bit values.
We present a simple yet effective approach called AdaBin to adaptively obtain the optimal binary sets.
Experimental results on benchmark models and datasets demonstrate that the proposed AdaBin is able to achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-08-17T05:43:33Z) - On Second-order Optimization Methods for Federated Learning [59.787198516188425]
We evaluate the performance of several second-order distributed methods with local steps in the federated learning setting.
We propose a novel variant that uses second-order local information for updates and a global line search to counteract the resulting local specificity.
arXiv Detail & Related papers (2021-09-06T12:04:08Z) - Unsupervised Deep Cross-modality Spectral Hashing [65.3842441716661]
The framework is a two-step hashing approach which decouples the optimization into binary optimization and hashing function learning.
We propose a novel spectral embedding-based algorithm to simultaneously learn single-modality and binary cross-modality representations.
We leverage the powerful CNN for images and propose a CNN-based deep architecture to learn text modality.
arXiv Detail & Related papers (2020-08-01T09:20:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.