論文の概要: Binary Classifier Optimization for Large Language Model Alignment
- arxiv url: http://arxiv.org/abs/2404.04656v2
- Date: Mon, 09 Jun 2025 07:10:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:08.314121
- Title: Binary Classifier Optimization for Large Language Model Alignment
- Title(参考訳): 大規模言語モデルアライメントのためのバイナリ分類器最適化
- Authors: Seungjae Jung, Gunsoo Han, Daniel Wontae Nam, Kyoung-Woon On,
- Abstract要約: ChatGPTのような現実世界のサービスでは、ユーザーフィードバックに基づいたモデルの調整がパフォーマンス向上に不可欠である。
既存のアライメント研究の多くは、ペアとして正と負の両方の反応を必要とする嗜好に基づくアプローチに依存している。
本稿では,バイナリフィードバックのみを用いてLLMを効果的に整合させる手法であるバイナリ最適化(BCO)を提案する。
- 参考スコア(独自算出の注目度): 4.61411484523337
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In real-world services such as ChatGPT, aligning models based on user feedback is crucial for improving model performance. However, due to the simplicity and convenience of providing feedback, users typically offer only basic binary signals, such as 'thumbs-up' or 'thumbs-down'. Most existing alignment research, on the other hand, relies on preference-based approaches that require both positive and negative responses as a pair. We propose Binary Classifier Optimization (BCO), a technique that effectively aligns LLMs using only binary feedback. BCO trains a binary classifier, where the logit serves as an implicit reward, effectively minimizing the Direct Preference Optimization (DPO) loss. We demonstrate that the binary cross-entropy loss employed in classifier training acts as an upper bound for the DPO loss. Additionally, a novel reward shift technique further minimizes the gap between the losses. We validate our methodology in two settings: first, on a paired preference dataset, where our method performs on par with DPO; and second, on a Likert-5 scale annotation dataset which stems from real users' queries. Our model consistently demonstrates effective and robust alignment across four base LLMs and three different datasets, showcasing the strength of our approach to learning from binary signals.
- Abstract(参考訳): ChatGPTのような現実世界のサービスでは、ユーザーフィードバックに基づくモデルの整合がモデルのパフォーマンス向上に不可欠である。
しかし、フィードバックの提供の単純さと利便性のため、ユーザは通常、"thumbs-up"や"thumbs-down"といった基本的なバイナリ信号のみを提供する。
一方、既存のアライメント研究のほとんどは、ペアとして正と負の両方の反応を必要とする嗜好に基づくアプローチに依存している。
本稿では,バイナリフィードバックのみを用いてLLMを効果的に整合させる手法であるバイナリ分類器最適化(BCO)を提案する。
BCOはバイナリ分類器を訓練し、ロジットは暗黙の報酬として機能し、直接優先度最適化(DPO)損失を効果的に最小化する。
分類器学習における二進的クロスエントロピー損失はDPO損失の上限として機能することが実証された。
さらに、新たな報酬シフト技術は損失間のギャップをさらに小さくする。
提案手法を2つの設定で検証する。まず,提案手法がDPOと同等に動作するペア選好データセット,次に,実際のユーザのクエリから派生したLikert-5スケールのアノテーションデータセットである。
我々のモデルは、4つの基本LLMと3つの異なるデータセット間で有効でロバストなアライメントを一貫して示し、バイナリ信号から学習するアプローチの強みを示している。
関連論文リスト
- Multi-Preference Lambda-weighted Listwise DPO for Small-Scale Model Alignment [5.276657230880984]
大規模言語モデル(LLM)は、幅広い言語タスクに対して強力な一般化を示すが、しばしば人間の好みに反する出力を生成する。
直接最適化選好(DPO)は、二項選好対に対する分類タスクとしてアライメントを扱い、プロセスを単純化する。
我々は、より詳細な人間のフィードバックからモデルを学習できるマルチパラメータLambda-weighted Listwise DPOを提案する。
本手法は, 実世界の展開に適した効率, 制御可能, きめ細かな適応を実現しつつ, 標準DPOのアライメント性能を常に向上させる。
論文 参考訳(メタデータ) (2025-06-24T16:47:17Z) - Smoothed Preference Optimization via ReNoise Inversion for Aligning Diffusion Models with Varied Human Preferences [13.588231827053923]
直接選好最適化(DPO)は、テキスト・ツー・イメージ(T2I)生成モデルと、ペアの選好データを用いた人間の選好を一致させる。
本稿では, DPO の目的を改善するために, 好み分布をモデル化する新しい手法である SmPO-Diffusion を提案する。
提案手法は,既存手法における過度な最適化と客観的なミスアライメントの問題を効果的に軽減する。
論文 参考訳(メタデータ) (2025-06-03T09:47:22Z) - Shallow Preference Signals: Large Language Model Aligns Even Better with Truncated Data? [34.18909976476456]
優先応答で得られる識別信号が初期トークンに集中していることが示される。
意外なことに、切り捨てられたデータセットでトレーニングされたモデルでは、トークンの前半または後半しか保持せず、完全なデータセットでトレーニングされたモデルと同等あるいはそれ以上のパフォーマンスを実現している。
そこで我々は,浅層優先信号を利用してアライメントと計算効率のトレードオフを最適化する,浅部報酬信号観測(Longth Control Decoding)とKL Threshold Control Decoding(KL Threshold Control Decoding)の2つの単純な復号方式を提案する。
論文 参考訳(メタデータ) (2025-05-21T17:59:02Z) - Calibrated Multi-Preference Optimization for Aligning Diffusion Models [92.90660301195396]
Calibrated Preference Optimization (CaPO) は、テキスト・ツー・イメージ(T2I)拡散モデルを調整する新しい手法である。
CaPOは、人間の注釈のない複数の報酬モデルからの一般的な好みを取り入れている。
実験結果から, CaPOは従来法よりも常に優れていたことが示唆された。
論文 参考訳(メタデータ) (2025-02-04T18:59:23Z) - Graph-Sequential Alignment and Uniformity: Toward Enhanced Recommendation Systems [51.716704243764994]
我々のフレームワークはグラフニューラルネットワーク(GNN)ベースのシーケンシャルレコメンデータを別個のサブモジュールとして使用し、同時に最適化された統合埋め込み空間を共同で共有する。
3つの実世界のデータセットの実験により、提案手法はどちらのアプローチも単独で大幅に性能が向上することを示した。
論文 参考訳(メタデータ) (2024-12-05T15:59:05Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
本稿では,自己監督的選好度損失とアライメント損失を組み合わせた自己監督的選好度損失を構成する,新しい自己監督的選好最適化(SPO)フレームワークを提案する。
その結果,SPOを既存の好み最適化手法とシームレスに統合し,最先端性能を実現することができた。
論文 参考訳(メタデータ) (2024-09-26T12:37:26Z) - Preference Alignment Improves Language Model-Based TTS [76.70693823683091]
選好アライメントアルゴリズムは、報酬モデルの嗜好に合わせてLMを調整し、生成されたコンテンツの望ましさを高める。
1.15B のパラメータ LM に基づく TTS モデルを用いて、嗜好の整合性は常に知性、話者類似性、代用主観的評価スコアを向上することを示した。
論文 参考訳(メタデータ) (2024-09-19T01:58:19Z) - Geometric-Averaged Preference Optimization for Soft Preference Labels [78.2746007085333]
LLMを人間の嗜好と整合させる多くのアルゴリズムは、人間の嗜好は二進的かつ決定論的であると仮定する。
本研究では,分散ソフトな選好ラベルを導入し,損失関数におけるLLM出力確率の重み付き幾何平均を用いて直接選好最適化(DPO)を改善する。
論文 参考訳(メタデータ) (2024-09-10T17:54:28Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
本稿では,BMC という名前のペアデータにおけるブリッジ・アンド・モデリングの効果的なフレームワークを提案する。
目的の修正によって、ペアの選好信号の一貫性と情報性が向上する。
DPOだけではこれらの相関をモデル化し、ニュアンス付き変動を捉えるには不十分である。
論文 参考訳(メタデータ) (2024-08-14T11:29:47Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
既存のペアデータを必要としない、効果的でスケーラブルなトレーニングパラダイムである自己拡張型優先度最適化(SAPO)を導入する。
負の反応を自律的に生成するセルフプレイの概念に基づいて、我々はさらに、データ探索とエクスプロイトを強化するために、非政治的な学習パイプラインを組み込む。
論文 参考訳(メタデータ) (2024-05-31T14:21:04Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) は、同一のプロンプトと関連するプロンプトの両方から、より多く、あまり好まれない応答を識別するように設計されている。
RPOは、大きな言語モデルをユーザの好みに合わせて調整し、トレーニングプロセスにおける適応性を改善する優れた能力を示している。
論文 参考訳(メタデータ) (2024-02-12T22:47:57Z) - Beyond Imitation: Leveraging Fine-grained Quality Signals for Alignment [105.34140537748546]
我々はFIGAという改良されたアライメント手法を提案し、従来の手法とは異なり、良質な応答と悪質な応答の対比から導出されるきめ細かい品質信号を取り込む。
まず、初期応答とそれに対応する修正データセットをペアリングする精巧なアライメントデータセットをキュレートする。
第2に,LLMの微粒な品質信号を利用してアライメントの学習を指導する新たな損失関数を考案する。
論文 参考訳(メタデータ) (2023-11-07T15:36:40Z) - Bidirectional Looking with A Novel Double Exponential Moving Average to
Adaptive and Non-adaptive Momentum Optimizers [109.52244418498974]
我々は,新しいtextscAdmeta(textbfADouble指数textbfMov averagtextbfE textbfAdaptiveおよび非適応運動量)フレームワークを提案する。
我々は、textscAdmetaR と textscAdmetaS の2つの実装を提供し、前者は RAdam を、後者は SGDM をベースとしています。
論文 参考訳(メタデータ) (2023-07-02T18:16:06Z) - FOSI: Hybrid First and Second Order Optimization [11.447526245792154]
本稿では,最適化プロセス中に二階情報を効率的に組み込むことにより,任意の一階目の性能を向上させるメタアルゴリズムFOSIを提案する。
我々の経験的評価は、FOSIがヘビーボールやアダムのような一階法の収束率と最適化時間を向上し、二階法(K-FAC, L-BFGS)よりも優れていることを示している。
論文 参考訳(メタデータ) (2023-02-16T18:45:46Z) - DAG Learning on the Permutahedron [33.523216907730216]
本稿では,観測データから潜在有向非巡回グラフ(DAG)を発見するための連続最適化フレームワークを提案する。
提案手法は、置換ベクトル(いわゆるペルムタヘドロン)のポリトープを最適化し、位相的順序付けを学習する。
論文 参考訳(メタデータ) (2023-01-27T18:22:25Z) - AdaBin: Improving Binary Neural Networks with Adaptive Binary Sets [27.022212653067367]
本稿では,重みとアクティベーションを共に1ビット値に分割したBNN(Binary Neural Networks)について検討する。
最適二元集合を適応的に得るために、AdaBin と呼ばれる単純で効果的なアプローチを提案する。
ベンチマークモデルとデータセットの実験結果は、提案されたAdaBinが最先端のパフォーマンスを達成可能であることを示している。
論文 参考訳(メタデータ) (2022-08-17T05:43:33Z) - Bi-level Alignment for Cross-Domain Crowd Counting [113.78303285148041]
現在の手法は、補助的なタスクを訓練したり、高価な粗大な見積もりを適用したりするための外部データに依存している。
そこで我々は, 簡易かつ効率的に適用可能な, 逆学習に基づく新しい手法を開発した。
実世界の5つのクラウドカウントベンチマークに対するアプローチを評価し、既存のアプローチを大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-05-12T02:23:25Z) - On Second-order Optimization Methods for Federated Learning [59.787198516188425]
フェデレート学習環境における局所的なステップを持つ2階分散手法の性能評価を行った。
本稿では,更新のための2階ローカル情報とグローバルライン検索を用いて,結果の局所的特異性に対処する新たな変種を提案する。
論文 参考訳(メタデータ) (2021-09-06T12:04:08Z) - Domain Adaptive Person Re-Identification via Coupling Optimization [58.567492812339566]
ドメイン適応型人物再識別(ReID)は、ドメインのギャップとターゲットシナリオに対するアノテーションの不足のために困難である。
本稿では,ドメイン不変写像 (DIM) 法とグローバル局所距離最適化 (GLO) を含む結合最適化手法を提案する。
GLOはターゲットドメインの教師なし設定でReIDモデルをトレーニングするために設計されている。
論文 参考訳(メタデータ) (2020-11-06T14:01:03Z) - Unsupervised Deep Cross-modality Spectral Hashing [65.3842441716661]
このフレームワークは、最適化をバイナリ最適化とハッシュ関数学習に分離する2段階のハッシュアプローチである。
本稿では,単一モダリティと二項相互モダリティを同時に学習するスペクトル埋め込みに基づく新しいアルゴリズムを提案する。
我々は、画像に強力なCNNを活用し、テキストモダリティを学ぶためのCNNベースのディープアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-08-01T09:20:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。