論文の概要: Challenges Faced by Large Language Models in Solving Multi-Agent Flocking
- arxiv url: http://arxiv.org/abs/2404.04752v1
- Date: Sat, 6 Apr 2024 22:34:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 19:40:41.314373
- Title: Challenges Faced by Large Language Models in Solving Multi-Agent Flocking
- Title(参考訳): 大規模言語モデルが直面する課題 : マルチエージェント・フロッキングの解法
- Authors: Peihan Li, Vishnu Menon, Bhavanaraj Gudiguntla, Daniel Ting, Lifeng Zhou,
- Abstract要約: フラッキング(Flocking)とは、システム内の複数のエージェントが衝突を避け、望ましい形成を維持しながら互いに近づこうとする行動である。
近年,大規模言語モデル (LLM) は,個々の意思決定者として様々な協調課題を解くという印象的な能力を示している。
本稿では,マルチエージェント・フロッキングにおいてLLMが直面する課題について論じ,今後の改善分野を提案する。
- 参考スコア(独自算出の注目度): 17.081075782529098
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Flocking is a behavior where multiple agents in a system attempt to stay close to each other while avoiding collision and maintaining a desired formation. This is observed in the natural world and has applications in robotics, including natural disaster search and rescue, wild animal tracking, and perimeter surveillance and patrol. Recently, large language models (LLMs) have displayed an impressive ability to solve various collaboration tasks as individual decision-makers. Solving multi-agent flocking with LLMs would demonstrate their usefulness in situations requiring spatial and decentralized decision-making. Yet, when LLM-powered agents are tasked with implementing multi-agent flocking, they fall short of the desired behavior. After extensive testing, we find that agents with LLMs as individual decision-makers typically opt to converge on the average of their initial positions or diverge from each other. After breaking the problem down, we discover that LLMs cannot understand maintaining a shape or keeping a distance in a meaningful way. Solving multi-agent flocking with LLMs would enhance their ability to understand collaborative spatial reasoning and lay a foundation for addressing more complex multi-agent tasks. This paper discusses the challenges LLMs face in multi-agent flocking and suggests areas for future improvement and research.
- Abstract(参考訳): フラッキング(Flocking)とは、システム内の複数のエージェントが衝突を避け、望ましい形成を維持しながら互いに近づこうとする行動である。
これは自然界で観察され、自然災害の捜索と救助、野生動物追跡、周辺監視とパトロールなどのロボット工学に応用されている。
近年,大規模言語モデル (LLM) は,個々の意思決定者として様々な協調課題を解くという印象的な能力を示している。
LLMによるマルチエージェント・フロッキングの解決は、空間的および分散的な意思決定を必要とする状況において、それらの有用性を示す。
しかし, LLM を利用したエージェントがマルチエージェント・フロッキングを実装している場合, 望ましい動作に欠ける。
広範囲な検査を行った結果,LSMを個別の意思決定者として扱うエージェントは,初期位置の平均値に収束するか,互いに分岐するかを選択するのが普通であることが判明した。
問題を分解した後、LLMは形状の維持や距離の維持を意味のある方法では理解できないことが判明した。
LLMでマルチエージェントの群れを解くことで、共同空間推論を理解する能力が向上し、より複雑なマルチエージェントタスクに対処するための基礎を築いた。
本稿では,マルチエージェント群におけるLCMの課題について論じ,今後の改善と研究の分野を提案する。
関連論文リスト
- MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
大規模言語モデル(LLM)は、ロボティクスの操作やナビゲーションなど、さまざまな領域にまたがる優れた計画能力を示している。
特殊なLLMエージェント間で高レベル計画および低レベル制御コード生成を分散する新しいマルチエージェントLLMフレームワークを提案する。
長軸タスクを含む9つのRLBenchタスクに対するアプローチを評価し、ゼロショット環境でロボット操作を解く能力を実証した。
論文 参考訳(メタデータ) (2024-11-26T17:53:44Z) - Adaptive In-conversation Team Building for Language Model Agents [33.03550687362213]
複数の大規模言語モデル(LLM)エージェントを活用することは、複雑なタスクに取り組む上で有望なアプローチであることが示されている。
私たちの新しい適応型チーム構築パラダイムは、Captain Agentという新しいエージェント設計を通じて実現された柔軟なソリューションを提供します。
6つの実世界のシナリオに対する包括的な評価は、Captain Agentが既存のマルチエージェントメソッドを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2024-05-29T18:08:37Z) - LLM-based Multi-Agent Reinforcement Learning: Current and Future Directions [8.55917897789612]
我々は、共通の目標を持つ複数のエージェントの協調作業と、それら間のコミュニケーションに焦点を当てる。
また、フレームワークの言語コンポーネントによって実現されるヒューマン・イン・オン・ザ・ループのシナリオについても検討する。
論文 参考訳(メタデータ) (2024-05-17T22:10:23Z) - Smurfs: Leveraging Multiple Proficiency Agents with Context-Efficiency for Tool Planning [14.635361844362794]
Smurfs'は、大規模言語モデルの応用に革命をもたらすために設計された最先端のマルチエージェントフレームワークである。
Smurfは、余分なコストなしで複雑なタスクを解くモデルの能力を高めることができる。
論文 参考訳(メタデータ) (2024-05-09T17:49:04Z) - Agent-Pro: Learning to Evolve via Policy-Level Reflection and Optimization [53.510942601223626]
大規模言語モデル(LLM)は多様なタスクに対して堅牢な問題解決能力を示す。
これらのタスクソルバは、タスクルールを通知し、行動を調整するために手作業によるプロンプトを必要とする。
本稿では,ポリシーレベルのリフレクションと最適化を備えた LLM ベースのエージェントである Agent-Pro を提案する。
論文 参考訳(メタデータ) (2024-02-27T15:09:20Z) - LLMArena: Assessing Capabilities of Large Language Models in Dynamic
Multi-Agent Environments [35.926581910260076]
マルチエージェント動的環境における大規模言語モデルの能力を評価するためのフレームワークであるLLMArenaを紹介する。
LLArenaはTrueskillスコアを使用して、空間推論、戦略的計画、数値推論、リスク評価、コミュニケーション、相手モデリング、チームコラボレーションなど、LLMエージェントの重要な能力を評価する。
我々は、LLMの規模や種類によって、広範囲にわたる実験と人的評価を行い、LLMは、完全に自律的なエージェントへと発展する上で、依然として重要な道のりを歩んでいることを示す。
論文 参考訳(メタデータ) (2024-02-26T11:31:48Z) - Large Language Model based Multi-Agents: A Survey of Progress and Challenges [44.92286030322281]
大規模言語モデル(LLM)は、幅広いタスクで大きな成功を収めています。
近年, 1 つの LLM を単一計画や意思決定エージェントとして利用する手法の開発により, 複雑な問題解決や世界シミュレーションにおいて, LLM ベースのマルチエージェントシステムは大きな進歩を遂げている。
論文 参考訳(メタデータ) (2024-01-21T23:36:14Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corexは,大規模言語モデルを自律エージェントに変換する,新たな汎用戦略スイートだ。
人間の振る舞いにインスパイアされたCorexは、Debate、Review、Retrieveモードといった多様なコラボレーションパラダイムによって構成されている。
我々は,複数のLDMを協調的に演奏することで,既存の手法に比べて性能が著しく向上することが実証された。
論文 参考訳(メタデータ) (2023-09-30T07:11:39Z) - Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
我々は,大言語モデル(LLM)を評価するためにスコーラブルネゴシエーション(scorable negotiations)を提案する。
合意に達するには、エージェントは強力な算術、推論、探索、計画能力を持つ必要がある。
我々は、新しいゲームを作成し、進化するベンチマークを持つことの難しさを増大させる手順を提供する。
論文 参考訳(メタデータ) (2023-09-29T13:33:06Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
大規模言語モデル(LLM)は、従来のNLPタスクを超えた現実的な実用的ミッションをターゲットとして、ますます賢く自律的になってきています。
我々は,現在8つの異なる環境からなるベンチマークであるAgentBenchを紹介し,LLM-as-Agentの推論と意思決定能力を評価する。
論文 参考訳(メタデータ) (2023-08-07T16:08:11Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
複数のエージェントが"tit for tat"の状態で議論を表現するマルチエージェント議論(MAD)フレームワークを提案し、審査員が議論プロセスを管理して最終解を得る。
我々のフレームワークは、深い熟考を必要とするタスクに役立ちそうなLSMにおける散発的思考を奨励する。
論文 参考訳(メタデータ) (2023-05-30T15:25:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。