論文の概要: Smurfs: Leveraging Multiple Proficiency Agents with Context-Efficiency for Tool Planning
- arxiv url: http://arxiv.org/abs/2405.05955v3
- Date: Mon, 24 Jun 2024 02:44:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 00:53:00.477724
- Title: Smurfs: Leveraging Multiple Proficiency Agents with Context-Efficiency for Tool Planning
- Title(参考訳): Smurfs: ツールプランニングにコンテキスト効率で複数の熟練エージェントを活用する
- Authors: Junzhi Chen, Juhao Liang, Benyou Wang,
- Abstract要約: Smurfs'は、大規模言語モデルの応用に革命をもたらすために設計された最先端のマルチエージェントフレームワークである。
Smurfは、余分なコストなしで複雑なタスクを解くモデルの能力を高めることができる。
- 参考スコア(独自算出の注目度): 14.635361844362794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of large language models (LLMs) has opened up unprecedented possibilities for automating complex tasks that are often comparable to human performance. Despite their capabilities, LLMs still encounter difficulties in completing tasks that require high levels of accuracy and complexity due to their inherent limitations in handling multifaceted problems single-handedly. This paper introduces `Smurfs', a cutting-edge multi-agent framework designed to revolutionize the application of LLMs. By seamlessly transforming a conventional LLM into a synergistic multi-agent ensemble, Smurfs can enhance the model's ability to solve complex tasks at no additional cost. This is achieved through innovative prompting strategies that allocate distinct roles within the model, thereby facilitating collaboration among specialized agents and forming an intelligent multi-agent system. Our empirical investigation on both open-ended task of StableToolBench and closed-ended task on HotpotQA showcases Smurfs' superior capability in intricate tool utilization scenarios. Notably, Smurfs outmatches all the baseline methods in both experiments, setting new state-of-the-art performance. Furthermore, through comprehensive ablation studies, we dissect the contribution of the core components of the multi-agent framework to its overall efficacy. This not only verifies the effectiveness of the framework, but also sets a route for future exploration of multi-agent LLM systems.
- Abstract(参考訳): 大規模言語モデル(LLM)の出現は、人間のパフォーマンスに匹敵する複雑なタスクを自動化するという前例のない可能性を開いた。
それらの能力にもかかわらず、LLMはシングルハンドで多面的問題を扱うのに固有の制限があるため、高いレベルの精度と複雑さを必要とするタスクを完了させるのに依然として困難に直面している。
本稿では,LDMの応用に革命をもたらすために設計された最先端のマルチエージェントフレームワークであるSmurfsを紹介する。
従来のLLMを相乗的なマルチエージェントアンサンブルにシームレスに変換することで、Smurfsは複雑なタスクを余分なコストで解く能力を高めることができる。
これは、モデル内の異なる役割を割り当て、特殊エージェント間のコラボレーションを促進し、インテリジェントなマルチエージェントシステムを形成する革新的なプロンプト戦略によって達成される。
StableToolBenchのオープンエンドタスクとHotpotQAのクローズドエンドタスクの両方に関する実証的研究は、複雑なツール利用シナリオにおけるSmurfsの優れた能力を示している。
特に、Smurfsは両方の実験ですべてのベースラインメソッドに匹敵し、新しい最先端のパフォーマンスを設定できる。
さらに、包括的アブレーション研究を通じて、マルチエージェントフレームワークのコアコンポーネントの全体的な有効性への貢献を識別する。
これは、フレームワークの有効性を検証するだけでなく、将来のマルチエージェントLLMシステムの探索ルートも設定する。
関連論文リスト
- MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
大規模言語モデル(LLM)は、ロボティクスの操作やナビゲーションなど、さまざまな領域にまたがる優れた計画能力を示している。
特殊なLLMエージェント間で高レベル計画および低レベル制御コード生成を分散する新しいマルチエージェントLLMフレームワークを提案する。
長軸タスクを含む9つのRLBenchタスクに対するアプローチを評価し、ゼロショット環境でロボット操作を解く能力を実証した。
論文 参考訳(メタデータ) (2024-11-26T17:53:44Z) - Do Large Language Models Have Compositional Ability? An Investigation into Limitations and Scalability [12.349247962800813]
大規模言語モデル(LLM)は多くのAI問題に対する強力なツールとして登場した。
また、ICL(In-context Learning)機能も備えている。
複合的なタスクにどのようにアプローチするかは、未解明の未解決の問題のままである。
論文 参考訳(メタデータ) (2024-07-22T15:22:34Z) - Sibyl: Simple yet Effective Agent Framework for Complex Real-world Reasoning [12.80689911863731]
Sibylは、最小限のツールセットを効率的に活用することによって、複雑な推論タスクに取り組むように設計された強力なフレームワークである。
Sibylは、最終回答を自己定義し、包括的でバランスの取れたアプローチを確保するために、マルチエージェントの議論に基づく陪審を実施。
GAIAベンチマークテストセットの実験結果から,Sibylエージェントは平均スコア34.55%の最先端性能を実現していることがわかった。
論文 参考訳(メタデータ) (2024-07-15T13:45:40Z) - Adaptive In-conversation Team Building for Language Model Agents [33.03550687362213]
複数の大規模言語モデル(LLM)エージェントを活用することは、複雑なタスクに取り組む上で有望なアプローチであることが示されている。
私たちの新しい適応型チーム構築パラダイムは、Captain Agentという新しいエージェント設計を通じて実現された柔軟なソリューションを提供します。
6つの実世界のシナリオに対する包括的な評価は、Captain Agentが既存のマルチエージェントメソッドを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2024-05-29T18:08:37Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - Towards Robust Multi-Modal Reasoning via Model Selection [7.6621866737827045]
LLMはエージェントの"脳"として機能し、協調的な多段階タスク解決のための複数のツールを編成する。
我々はテスト時に無視できるランタイムオーバーヘッドを持つプラグインとして、$textitM3$フレームワークを提案する。
実験の結果,我々のフレームワークは,ユーザ入力とサブタスク依存の両方を考慮した動的モデル選択を可能にすることがわかった。
論文 参考訳(メタデータ) (2023-10-12T16:06:18Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corexは,大規模言語モデルを自律エージェントに変換する,新たな汎用戦略スイートだ。
人間の振る舞いにインスパイアされたCorexは、Debate、Review、Retrieveモードといった多様なコラボレーションパラダイムによって構成されている。
我々は,複数のLDMを協調的に演奏することで,既存の手法に比べて性能が著しく向上することが実証された。
論文 参考訳(メタデータ) (2023-09-30T07:11:39Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
大規模言語モデル(LLM)は、従来のNLPタスクを超えた現実的な実用的ミッションをターゲットとして、ますます賢く自律的になってきています。
我々は,現在8つの異なる環境からなるベンチマークであるAgentBenchを紹介し,LLM-as-Agentの推論と意思決定能力を評価する。
論文 参考訳(メタデータ) (2023-08-07T16:08:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。