論文の概要: LLM-Based Multi-Agent Systems for Software Engineering: Vision and the Road Ahead
- arxiv url: http://arxiv.org/abs/2404.04834v1
- Date: Sun, 7 Apr 2024 07:05:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-04-09 19:20:53.259441
- Title: LLM-Based Multi-Agent Systems for Software Engineering: Vision and the Road Ahead
- Title(参考訳): ソフトウェア工学のためのLLMベースのマルチエージェントシステム:ビジョンと道の先
- Authors: Junda He, Christoph Treude, David Lo,
- Abstract要約: 本稿では,複雑かつ多面的なソフトウェア工学の課題に対処する上で,マルチエージェント(LMA)システムの進化を考察する。
将来のソフトウェアエンジニアリングプラクティスにおけるLMAシステムの役割を調べることで、このビジョンペーパーは潜在的なアプリケーションと新たな課題を強調します。
- 参考スコア(独自算出の注目度): 14.834072370183106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating Large Language Models(LLMs) into autonomous agents marks a significant shift in the research landscape by offering cognitive abilities competitive to human planning and reasoning. This paper envisions the evolution of LLM-based Multi-Agent (LMA) systems in addressing complex and multi-faceted software engineering challenges. LMA systems introduce numerous benefits, including enhanced robustness through collaborative cross-examination, autonomous problem-solving, and scalable solutions to complex software projects. By examining the role of LMA systems in future software engineering practices, this vision paper highlights the potential applications and emerging challenges. We further point to specific opportunities for research and conclude with a research agenda with a set of research questions to guide future research directions.
- Abstract(参考訳): 大規模言語モデル(LLM)を自律エージェントに統合することは、人間の計画や推論と競合する認知能力を提供することによって、研究の展望に大きな変化をもたらす。
本稿では,LLMをベースとしたマルチエージェント(Multi-Agent, LMA)システムの,複雑かつ多面的なソフトウェア工学の課題に対処する進化を考察する。
LMAシステムには、協調的な相互検査、自律的な問題解決、複雑なソフトウェアプロジェクトに対するスケーラブルなソリューションなど、数多くのメリットがある。
将来のソフトウェアエンジニアリングプラクティスにおけるLMAシステムの役割を調べることで、このビジョンペーパーは潜在的なアプリケーションと新たな課題を強調します。
さらに、研究の具体的な機会を指摘し、今後の研究方向性を導くための一連の研究課題で研究アジェンダを締結する。
関連論文リスト
- Towards Agentic Recommender Systems in the Era of Multimodal Large Language Models [75.4890331763196]
大規模言語モデル(LLM)の最近のブレークスルーは、エージェントAIシステムの出現につながっている。
LLMベースのAgentic RS(LLM-ARS)は、よりインタラクティブで、コンテキストを認識し、プロアクティブなレコメンデーションを提供する。
論文 参考訳(メタデータ) (2025-03-20T22:37:15Z) - LLMs Working in Harmony: A Survey on the Technological Aspects of Building Effective LLM-Based Multi Agent Systems [0.0]
本研究では,LLMに基づくマルチエージェントシステムの開発に不可欠な基礎技術について検討する。
協調的で動的な環境のためにこれらのシステムをいかに最適化するかを問うため、アーキテクチャ、メモリ、計画、技術/フレームワークの4つの重要な領域に焦点を当てます。
論文 参考訳(メタデータ) (2025-03-13T06:17:50Z) - An Overview of Large Language Models for Statisticians [109.38601458831545]
大規模言語モデル(LLM)は人工知能(AI)の変換ツールとして登場した。
本稿では, 統計学者がLLMの開発に重要な貢献できる可能性について考察する。
我々は不確実性定量化、解釈可能性、公正性、プライバシー、透かし、モデル適応といった問題に焦点を当てる。
論文 参考訳(メタデータ) (2025-02-25T03:40:36Z) - Progressive Multimodal Reasoning via Active Retrieval [64.74746997923967]
多段階多モーダル推論タスクは、大規模言語モデル(MLLM)に重大な課題をもたらす
本稿では,MLLMの推論能力の向上を目的とした汎用フレームワークAR-MCTSを提案する。
我々は,AR-MCTSがサンプリングの多様性と精度を最適化し,信頼性の高いマルチモーダル推論を実現することを示す。
論文 参考訳(メタデータ) (2024-12-19T13:25:39Z) - Insight-V: Exploring Long-Chain Visual Reasoning with Multimodal Large Language Models [64.1799100754406]
大きな言語モデル(LLM)は、さらなる推論によって拡張された能力と信頼性を示す。
LLM推論の改善へのさまざまな取り組みにもかかわらず、高品質な長鎖推論データと最適化されたトレーニングパイプラインは、まだビジョン言語タスクでは不十分である。
本稿では,1)複雑なマルチモーダルタスクに対する長大かつ堅牢な推論データを生成するための初期の取り組みであるInsight-Vと,2)MLLMの推論能力を高めるための効果的なトレーニングパイプラインを提案する。
論文 参考訳(メタデータ) (2024-11-21T18:59:55Z) - Navigating the Risks: A Survey of Security, Privacy, and Ethics Threats in LLM-Based Agents [67.07177243654485]
この調査は、大規模言語モデルに基づくエージェントが直面するさまざまな脅威を収集、分析する。
LLMをベースとしたエージェントの6つの重要な特徴を概説する。
4つの代表エージェントをケーススタディとして選択し,実践的に直面する可能性のあるリスクを分析した。
論文 参考訳(メタデータ) (2024-11-14T15:40:04Z) - The Systems Engineering Approach in Times of Large Language Models [6.333694023236363]
重要な社会問題に対処するためには、この技術を社会技術システムに適用する必要がある。
本稿では,LLMがAIベースのシステムにおいて,システム研究の成果を生み出す上での課題について紹介する。
論文 参考訳(メタデータ) (2024-11-13T22:10:07Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。
本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (2024-08-02T15:14:53Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Large Multimodal Agents: A Survey [78.81459893884737]
大規模言語モデル(LLM)は、テキストベースのAIエージェントのパワーで優れたパフォーマンスを実現している。
LLMを利用したAIエージェントをマルチモーダルドメインに拡張することに焦点を当てた、新たな研究トレンドがある。
本総説は, この急速に発展する分野において, 今後の研究に有用な洞察とガイドラインを提供することを目的としている。
論文 参考訳(メタデータ) (2024-02-23T06:04:23Z) - LLM Multi-Agent Systems: Challenges and Open Problems [14.174833743880244]
本稿では,既存のマルチエージェントシステムについて検討し,未解決の課題を特定する。
マルチエージェントシステムにおける個々のエージェントの多様な機能と役割を活用することで、これらのシステムはコラボレーションを通じて複雑なタスクに取り組むことができる。
本稿では,タスク割り当ての最適化,反復的議論による堅牢な推論の促進,複雑で階層的なコンテキスト情報の管理,マルチエージェントシステム内の複雑なインタラクションを支援するためのメモリ管理の強化について論じる。
論文 参考訳(メタデータ) (2024-02-05T23:06:42Z) - Building Guardrails for Large Language Models [19.96292920696796]
LLMの入力や出力をフィルタリングするガードレールは、コアセーフガード技術として登場した。
このポジションペーパーでは、現在のオープンソースソリューション(Llama Guard, Nvidia NeMo, Guardrails AI)を詳しく調べ、より完全なソリューションを構築するための課題と道筋について論じる。
論文 参考訳(メタデータ) (2024-02-02T16:35:00Z) - Balancing Autonomy and Alignment: A Multi-Dimensional Taxonomy for
Autonomous LLM-powered Multi-Agent Architectures [0.0]
大規模言語モデル(LLM)は、洗練された言語理解と生成能力を備えた人工知能の分野に革命をもたらした。
本稿では,LLMを用いた自律型マルチエージェントシステムが自律性とアライメントの動的相互作用をどのようにバランスさせるかを分析するために,総合的な多次元分類法を提案する。
論文 参考訳(メタデータ) (2023-10-05T16:37:29Z) - A Survey on Large Language Model based Autonomous Agents [105.2509166861984]
大規模言語モデル(LLM)は、人間レベルの知性を達成する上で、顕著な可能性を示している。
本稿では,LLMに基づく自律エージェントの分野を総合的な観点から体系的に検討する。
本稿では、社会科学、自然科学、工学の分野におけるLLMベースの自律エージェントの多様な応用について概観する。
論文 参考訳(メタデータ) (2023-08-22T13:30:37Z) - Towards an Understanding of Large Language Models in Software Engineering Tasks [29.30433406449331]
大規模言語モデル(LLM)は、テキスト生成や推論タスクにおける驚くべきパフォーマンスのために、広く注目を集め、研究している。
コード生成などのソフトウェア工学タスクにおけるLLMの評価と最適化が研究の焦点となっている。
本稿では,LLMとソフトウェア工学を組み合わせた研究・製品について包括的に検討・検討する。
論文 参考訳(メタデータ) (2023-08-22T12:37:29Z) - TPTU: Large Language Model-based AI Agents for Task Planning and Tool
Usage [28.554981886052953]
大規模言語モデル(LLM)は、様々な現実世界のアプリケーションのための強力なツールとして登場した。
LLMの本質的な生成能力は、その長所にもかかわらず、複雑なタスクを扱うには不十分である。
本稿では,LLMベースのAIエージェントに適した構造化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-07T09:22:03Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
GPT-4Vで表されるマルチモーダル大言語モデル(MLLM)は、新たな研究ホットスポットとなっている。
本稿では,MLLMの最近の進歩を追跡・要約することを目的とする。
論文 参考訳(メタデータ) (2023-06-23T15:21:52Z) - Multi-Agent Collaboration: Harnessing the Power of Intelligent LLM
Agents [0.0]
本稿では,マルチエージェントシステムのパワーを活用した大規模言語モデル(LLM)の能力向上のための新しいフレームワークを提案する。
本フレームワークでは,複数の知的エージェントコンポーネントがそれぞれ特有な属性と役割を持つ協調環境を導入し,複雑なタスクをより効率的に効率的に処理する。
論文 参考訳(メタデータ) (2023-06-05T23:55:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。