Shortcut-connected Expert Parallelism for Accelerating Mixture-of-Experts
- URL: http://arxiv.org/abs/2404.05019v3
- Date: Thu, 29 May 2025 04:25:16 GMT
- Title: Shortcut-connected Expert Parallelism for Accelerating Mixture-of-Experts
- Authors: Weilin Cai, Juyong Jiang, Le Qin, Junwei Cui, Sunghun Kim, Jiayi Huang,
- Abstract summary: ScMoE is a novel shortcut-connected MoE architecture integrated with an overlapping parallelization strategy.<n>Compared to the prevalent top-2 MoE baseline, ScMoE achieves speedups of 1.49 times in training and 1.82 times in inference.
- Score: 4.629608387540524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Expert parallelism has emerged as a key strategy for distributing the computational workload of sparsely-gated mixture-of-experts (MoE) models across multiple devices, enabling the processing of increasingly large-scale models. However, the All-to-All communication inherent to expert parallelism poses a significant bottleneck, limiting the efficiency of MoE models. Although existing optimization methods partially mitigate this issue, they remain constrained by the sequential dependency between communication and computation operations. To address this challenge, we propose ScMoE, a novel shortcut-connected MoE architecture integrated with an overlapping parallelization strategy. ScMoE decouples communication from its conventional sequential ordering, enabling up to 100% overlap with computation. Compared to the prevalent top-2 MoE baseline, ScMoE achieves speedups of 1.49 times in training and 1.82 times in inference. Moreover, our experiments and analyses indicate that ScMoE not only achieves comparable but in some instances surpasses the model quality of existing approaches.
Related papers
- Reinforced Model Merging [53.84354455400038]
We present an innovative framework termed Reinforced Model Merging (RMM), which encompasses an environment and agent tailored for merging tasks.<n>By utilizing data subsets during the evaluation process, we addressed the bottleneck in the reward feedback phase, thereby accelerating RMM by up to 100 times.
arXiv Detail & Related papers (2025-03-27T08:52:41Z) - Comet: Fine-grained Computation-communication Overlapping for Mixture-of-Experts [8.80408909878008]
Mixture-of-experts (MoE) has been extensively employed to scale large language models to trillion-plus parameters.
Existing methods suggest the communication in a MoE layer to be pipelined with the computation for overlapping.
We present COMET, an optimized MoE system with fine-grained communication-computation overlapping.
arXiv Detail & Related papers (2025-02-27T06:36:45Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.
deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.
This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - Efficient and Effective Weight-Ensembling Mixture of Experts for Multi-Task Model Merging [111.8456671452411]
Multi-task learning (MTL) leverages a shared model to accomplish multiple tasks and facilitate knowledge transfer.
We propose a Weight-Ensembling Mixture of Experts (WEMoE) method for multi-task model merging.
We show that WEMoE and E-WEMoE outperform state-of-the-art (SOTA) model merging methods in terms of MTL performance, generalization, and robustness.
arXiv Detail & Related papers (2024-10-29T07:16:31Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
We propose a novel framework Read-ME that transforms pre-trained dense LLMs into smaller MoE models.
Our approach employs activation sparsity to extract experts.
Read-ME outperforms other popular open-source dense models of similar scales.
arXiv Detail & Related papers (2024-10-24T19:48:51Z) - EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
This paper introduces EPS-MoE, a novel expert pipeline scheduler for MoE.
Our results demonstrate an average 21% improvement in prefill throughput over existing parallel inference methods.
arXiv Detail & Related papers (2024-10-16T05:17:49Z) - ISO: Overlap of Computation and Communication within Seqenence For LLM Inference [8.616769297336708]
This paper introduces a novel strategy for computation-communication overlap that operates at the sequence level.
Experimental evaluations conducted using 30b/70b models have demonstrated significant improvements in efficiency.
arXiv Detail & Related papers (2024-09-04T05:22:17Z) - Parm: Efficient Training of Large Sparsely-Activated Models with Dedicated Schedules [15.680276212483292]
We propose Parm, a system that accelerates MP+EP+ESP training by designing two dedicated schedules for placing communication tasks.
Parm achieves 1.13$times$ to 5.77$times$ speedup on 1296 manually configured MoE layers and approximately 3$times$ improvement on two real-world MoE models.
arXiv Detail & Related papers (2024-06-30T05:55:11Z) - A Provably Effective Method for Pruning Experts in Fine-tuned Sparse Mixture-of-Experts [49.394145046409044]
This paper provides the first provably efficient technique for pruning experts in finetuned MoE models.
We theoretically prove that prioritizing the pruning of the experts with a smaller change of the routers l2 norm from the pretrained model guarantees the preservation of test accuracy.
Although our theoretical analysis is centered on binary classification tasks on simplified MoE architecture, our expert pruning method is verified on large vision MoE models.
arXiv Detail & Related papers (2024-05-26T17:52:58Z) - Mechanistic Design and Scaling of Hybrid Architectures [114.3129802943915]
We identify and test new hybrid architectures constructed from a variety of computational primitives.
We experimentally validate the resulting architectures via an extensive compute-optimal and a new state-optimal scaling law analysis.
We find MAD synthetics to correlate with compute-optimal perplexity, enabling accurate evaluation of new architectures.
arXiv Detail & Related papers (2024-03-26T16:33:12Z) - DiPaCo: Distributed Path Composition [31.686642863608558]
We propose a co-designed modular architecture and training approach for machine learning models.
During training, DiPaCo distributes by paths through a set of shared modules.
At inference time, only a single path needs to be executed for each input, without the need for model compression.
arXiv Detail & Related papers (2024-03-15T18:26:51Z) - Exploiting Inter-Layer Expert Affinity for Accelerating
Mixture-of-Experts Model Inference [3.217776693788795]
We propose a lightweight optimization technique called ExFlow to largely accelerate the inference of pre-trained MoE models.
By exploiting the inter-layer expert affinity, our solution can be directly applied to pre-trained MoE models without any fine-tuning or accuracy degradation.
Our solution beats the cutting-edge MoE implementations with experts from 8 to 64, with up to 2.2x improvement in inference throughput.
arXiv Detail & Related papers (2024-01-16T14:16:47Z) - Semi-Federated Learning: Convergence Analysis and Optimization of A
Hybrid Learning Framework [70.83511997272457]
We propose a semi-federated learning (SemiFL) paradigm to leverage both the base station (BS) and devices for a hybrid implementation of centralized learning (CL) and FL.
We propose a two-stage algorithm to solve this intractable problem, in which we provide the closed-form solutions to the beamformers.
arXiv Detail & Related papers (2023-10-04T03:32:39Z) - Scalable Optimal Margin Distribution Machine [50.281535710689795]
Optimal margin Distribution Machine (ODM) is a newly proposed statistical learning framework rooting in the novel margin theory.
This paper proposes a scalable ODM, which can achieve nearly ten times speedup compared to the original ODM training method.
arXiv Detail & Related papers (2023-05-08T16:34:04Z) - Pipeline MoE: A Flexible MoE Implementation with Pipeline Parallelism [91.9372563527801]
Existing MoE models suffer from tremendous inner-node and inter-node communication overhead.
We propose a novel MoE architecture called Pipeline MoE (PPMoE) to tackle them.
PPMoE builds expert parallel incorporating with tensor parallel and replaces communication-intensive all-to-all dispatching and gathering.
arXiv Detail & Related papers (2023-04-22T14:09:14Z) - A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize
Mixture-of-Experts Training [13.346719319555943]
Mixture-of-Experts (MoE) is a neural network architecture that adds sparsely activated expert blocks to a base model.
Current distributed deep learning frameworks are limited in their ability to train high-quality MoE models with large base models.
We present DeepSpeed-TED, a novel, three-dimensional, hybrid parallel algorithm that combines data, tensor, and expert parallelism.
arXiv Detail & Related papers (2023-03-11T05:38:15Z) - SWARM Parallelism: Training Large Models Can Be Surprisingly
Communication-Efficient [69.61083127540776]
Deep learning applications benefit from using large models with billions of parameters.
Training these models is notoriously expensive due to the need for specialized HPC clusters.
We consider alternative setups for training large models: using cheap "preemptible" instances or pooling existing resources from multiple regions.
arXiv Detail & Related papers (2023-01-27T18:55:19Z) - Scaling Distributed Deep Learning Workloads beyond the Memory Capacity
with KARMA [58.040931661693925]
We propose a strategy that combines redundant recomputing and out-of-core methods.
We achieve an average of 1.52x speedup in six different models over the state-of-the-art out-of-core methods.
Our data parallel out-of-core solution can outperform complex hybrid model parallelism in training large models, e.g. Megatron-LM and Turning-NLG.
arXiv Detail & Related papers (2020-08-26T07:24:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.