FTMixer: Frequency and Time Domain Representations Fusion for Time Series Modeling
- URL: http://arxiv.org/abs/2405.15256v2
- Date: Sat, 10 Aug 2024 06:09:23 GMT
- Title: FTMixer: Frequency and Time Domain Representations Fusion for Time Series Modeling
- Authors: Zhengnan Li, Yunxiao Qin, Xilong Cheng, Yuting Tan,
- Abstract summary: Time series data can be represented in both the time and frequency domains.
We propose the Frequency and Time Domain Mixer (FTMixer) to harness the strengths of both domains.
- Score: 7.980240191498627
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series data can be represented in both the time and frequency domains, with the time domain emphasizing local dependencies and the frequency domain highlighting global dependencies. To harness the strengths of both domains in capturing local and global dependencies, we propose the Frequency and Time Domain Mixer (FTMixer). To exploit the global characteristics of the frequency domain, we introduce the Frequency Channel Convolution (FCC) module, designed to capture global inter-series dependencies. Inspired by the windowing concept in frequency domain transformations, we present the Windowing Frequency Convolution (WFC) module to capture local dependencies. The WFC module first applies frequency transformation within each window, followed by convolution across windows. Furthermore, to better capture these local dependencies, we employ channel-independent scheme to mix the time domain and frequency domain patches. Notably, FTMixer employs the Discrete Cosine Transformation (DCT) with real numbers instead of the complex-number-based Discrete Fourier Transformation (DFT), enabling direct utilization of modern deep learning operators in the frequency domain. Extensive experimental results across seven real-world long-term time series datasets demonstrate the superiority of FTMixer, in terms of both forecasting performance and computational efficiency.
Related papers
- MFF-FTNet: Multi-scale Feature Fusion across Frequency and Temporal Domains for Time Series Forecasting [18.815152183468673]
Time series forecasting is crucial in many fields, yet current deep learning models struggle with noise, data sparsity, and capturing complex patterns.
This paper presents MFF-FTNet, a novel framework addressing these challenges by combining contrastive learning with multi-scale feature extraction.
Extensive experiments on five real-world datasets demonstrate that MFF-FTNet significantly outperforms state-of-the-art models.
arXiv Detail & Related papers (2024-11-26T12:41:42Z) - Accelerated Multi-Contrast MRI Reconstruction via Frequency and Spatial Mutual Learning [50.74383395813782]
We propose a novel Frequency and Spatial Mutual Learning Network (FSMNet) to explore global dependencies across different modalities.
The proposed FSMNet achieves state-of-the-art performance for the Multi-Contrast MR Reconstruction task with different acceleration factors.
arXiv Detail & Related papers (2024-09-21T12:02:47Z) - Score-CDM: Score-Weighted Convolutional Diffusion Model for Multivariate Time Series Imputation [0.035984704795350306]
Multivariant time series (MTS) data are usually incomplete in real scenarios.
We propose a Score-weighted Convolutional Diffusion Model (Score-CDM) for short, whose backbone consists of a Score-weighted Convolution Module (SCM) and an Adaptive Reception Module (ARM)
We conduct extensive evaluations on three real MTS datasets of different domains, and the result verifies the effectiveness of the proposed Score-CDM.
arXiv Detail & Related papers (2024-05-21T02:00:55Z) - ATFNet: Adaptive Time-Frequency Ensembled Network for Long-term Time Series Forecasting [7.694820760102176]
ATFNet is an innovative framework that combines a time domain module and a frequency domain module.
We introduce Dominant Harmonic Series Energy Weighting, a novel mechanism for adjusting the weights between the two modules.
Our Complex-valued Spectrum Attention mechanism offers a novel approach to discern the intricate relationships between different frequency combinations.
arXiv Detail & Related papers (2024-04-08T04:41:39Z) - Virtual Classification: Modulating Domain-Specific Knowledge for
Multidomain Crowd Counting [67.38137379297717]
Multidomain crowd counting aims to learn a general model for multiple diverse datasets.
Deep networks prefer modeling distributions of the dominant domains instead of all domains, which is known as domain bias.
We propose a Modulating Domain-specific Knowledge Network (MDKNet) to handle the domain bias issue in multidomain crowd counting.
arXiv Detail & Related papers (2024-02-06T06:49:04Z) - Frequency-domain MLPs are More Effective Learners in Time Series
Forecasting [67.60443290781988]
Time series forecasting has played the key role in different industrial domains, including finance, traffic, energy, and healthcare.
Most-based forecasting methods suffer from the point-wise mappings and information bottleneck.
We propose FreTS, a simple yet effective architecture built upon Frequency-domains for Time Series forecasting.
arXiv Detail & Related papers (2023-11-10T17:05:13Z) - WFTNet: Exploiting Global and Local Periodicity in Long-term Time Series
Forecasting [61.64303388738395]
We propose a Wavelet-Fourier Transform Network (WFTNet) for long-term time series forecasting.
Tests on various time series datasets show WFTNet consistently outperforms other state-of-the-art baselines.
arXiv Detail & Related papers (2023-09-20T13:44:18Z) - Dynamic Temporal Filtering in Video Models [128.02725199486719]
We present a new recipe of temporal feature learning, namely Dynamic Temporal Filter (DTF)
DTF learns a specialized frequency filter for every spatial location to model its long-range temporal dynamics.
It is feasible to plug DTF block into ConvNets and Transformer, yielding DTF-Net and DTF-Transformer.
arXiv Detail & Related papers (2022-11-15T15:59:28Z) - Deep Fourier Up-Sampling [100.59885545206744]
Up-sampling in the Fourier domain is more challenging as it does not follow such a local property.
We propose a theoretically sound Deep Fourier Up-Sampling (FourierUp) to solve these issues.
arXiv Detail & Related papers (2022-10-11T06:17:31Z) - BolT: Fused Window Transformers for fMRI Time Series Analysis [0.0]
We present BolT, a blood-oxygen-level-dependent transformer, for analyzing fMRI time series.
To integrate information across windows, cross-window attention is computed between base tokens in each time window and fringe tokens from neighboring time windows.
Experiments on public fMRI datasets clearly illustrate the superior performance of BolT against state-of-the-art methods.
arXiv Detail & Related papers (2022-05-23T19:17:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.