Constructing Data Transaction Chains Based on Opportunity Cost Exploration
- URL: http://arxiv.org/abs/2404.05272v1
- Date: Mon, 8 Apr 2024 08:02:18 GMT
- Title: Constructing Data Transaction Chains Based on Opportunity Cost Exploration
- Authors: Jie Liu, Tao Feng, Yan Jiang, Peizheng Wang, Chao Wu,
- Abstract summary: This paper compares data trading markets with traditional ones, focusing on how the replicability and privacy of data impact data markets.
We discuss how data's replicability fundamentally alters the concept of opportunity cost in traditional microeconomics within the context of data markets.
This paper outlines the constraints for data circulation within the privacy domain chain and presents a model that maximizes data's value under these constraints.
- Score: 9.353146025394372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data trading is increasingly gaining attention. However, the inherent replicability and privacy concerns of data make it challenging to directly apply traditional trading theories to data markets. This paper compares data trading markets with traditional ones, focusing particularly on how the replicability and privacy of data impact data markets. We discuss how data's replicability fundamentally alters the concept of opportunity cost in traditional microeconomics within the context of data markets. Additionally, we explore how to leverage this change to maximize benefits without compromising data privacy. This paper outlines the constraints for data circulation within the privacy domain chain and presents a model that maximizes data's value under these constraints. Specific application scenarios are provided, and experiments demonstrate the solvability of this model.
Related papers
- A Survey on Data Markets [73.07800441775814]
Growing trend of trading data for greater welfare has led to the emergence of data markets.
A data market is any mechanism whereby the exchange of data products including datasets and data derivatives takes place.
It serves as a coordinating mechanism by which several functions, including the pricing and the distribution of data, interact.
arXiv Detail & Related papers (2024-11-09T15:09:24Z) - Tabular Data Synthesis with Differential Privacy: A Survey [24.500349285858597]
Data sharing is a prerequisite for collaborative innovation, enabling organizations to leverage diverse datasets for deeper insights.
Data synthesis tackles this by generating artificial datasets that preserve the statistical characteristics of real data.
Differentially private data synthesis has emerged as a promising approach to privacy-aware data sharing.
arXiv Detail & Related papers (2024-11-04T06:32:48Z) - DAVED: Data Acquisition via Experimental Design for Data Markets [25.300193837833426]
We propose a federated approach to the data acquisition problem that is inspired by linear experimental design.
Our proposed data acquisition method achieves lower prediction error without requiring labeled validation data.
The key insight of our work is that a method that directly estimates the benefit of acquiring data for test set prediction is particularly compatible with a decentralized market setting.
arXiv Detail & Related papers (2024-03-20T18:05:52Z) - Privacy-Aware Data Acquisition under Data Similarity in Regression Markets [29.64195175524365]
We show that data similarity and privacy preferences are integral to market design.
We numerically evaluate how data similarity affects market participation and traded data value.
arXiv Detail & Related papers (2023-12-05T09:39:04Z) - Data Acquisition: A New Frontier in Data-centric AI [65.90972015426274]
We first present an investigation of current data marketplaces, revealing lack of platforms offering detailed information about datasets.
We then introduce the DAM challenge, a benchmark to model the interaction between the data providers and acquirers.
Our evaluation of the submitted strategies underlines the need for effective data acquisition strategies in Machine Learning.
arXiv Detail & Related papers (2023-11-22T22:15:17Z) - SWDPM: A Social Welfare-Optimized Data Pricing Mechanism [21.487641773601737]
We propose a novel approach to modeling multi-round data trading with progressively disclosed information.
We introduce a Social Welfare-optimized Data Pricing Mechanism (SWDPM) to find optimal pricing strategies.
Numerical experiments demonstrate that the SWDPM can increase social welfare 3 times by up to 54% in trading feasibility.
arXiv Detail & Related papers (2023-05-08T02:25:35Z) - A Survey of Data Pricing for Data Marketplaces [77.3189288320768]
This paper attempts to comprehensively review the state-of-the-art on existing data pricing studies.
Our key contribution lies in a new taxonomy of data pricing studies that unifies different attributes determining data prices.
arXiv Detail & Related papers (2023-03-07T04:35:56Z) - Lessons from the AdKDD'21 Privacy-Preserving ML Challenge [57.365745458033075]
A prominent proposal at W3C only allows sharing advertising signals through aggregated, differentially private reports of past displays.
To study this proposal extensively, an open Privacy-Preserving Machine Learning Challenge took place at AdKDD'21.
A key finding is that learning models on large, aggregated data in the presence of a small set of unaggregated data points can be surprisingly efficient and cheap.
arXiv Detail & Related papers (2022-01-31T11:09:59Z) - Data Sharing Markets [95.13209326119153]
We study a setup where each agent can be both buyer and seller of data.
We consider two cases: bilateral data exchange (trading data with data) and unilateral data exchange (trading data with money)
arXiv Detail & Related papers (2021-07-19T06:00:34Z) - Causally Constrained Data Synthesis for Private Data Release [36.80484740314504]
Using synthetic data which reflects certain statistical properties of the original data preserves the privacy of the original data.
Prior works utilize differentially private data release mechanisms to provide formal privacy guarantees.
We propose incorporating causal information into the training process to favorably modify the aforementioned trade-off.
arXiv Detail & Related papers (2021-05-27T13:46:57Z) - Super-App Behavioral Patterns in Credit Risk Models: Financial,
Statistical and Regulatory Implications [110.54266632357673]
We present the impact of alternative data that originates from an app-based marketplace, in contrast to traditional bureau data, upon credit scoring models.
Our results, validated across two countries, show that these new sources of data are particularly useful for predicting financial behavior in low-wealth and young individuals.
arXiv Detail & Related papers (2020-05-09T01:32:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.