論文の概要: RoT: Enhancing Large Language Models with Reflection on Search Trees
- arxiv url: http://arxiv.org/abs/2404.05449v2
- Date: Thu, 11 Apr 2024 05:21:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 17:56:32.745972
- Title: RoT: Enhancing Large Language Models with Reflection on Search Trees
- Title(参考訳): RoT: 検索ツリーのリフレクションによる大規模言語モデルの強化
- Authors: Wenyang Hui, Chengyue Jiang, Yan Wang, Kewei Tu,
- Abstract要約: 本稿では,木探索に基づくプロンプト手法の性能向上を目的としたLLMリフレクションフレームワークであるリフレクション・オン・サーチ・ツリー(RoT)について紹介する。
強力なLLMを使用して、以前の木探索経験からガイドラインを要約し、弱いLLMの能力を高める。
本稿では,RoTがより具体的で意味のあるガイドラインを生成するのを支援するために,歴史的検索プロセスから重要な情報を識別する新しい状態選択法を提案する。
- 参考スコア(独自算出の注目度): 39.56534154752625
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Large language models (LLMs) have demonstrated impressive capability in reasoning and planning when integrated with tree-search-based prompting methods. However, since these methods ignore the previous search experiences, they often make the same mistakes in the search process. To address this issue, we introduce Reflection on search Trees (RoT), an LLM reflection framework designed to improve the performance of tree-search-based prompting methods. It uses a strong LLM to summarize guidelines from previous tree search experiences to enhance the ability of a weak LLM. The guidelines are instructions about solving this task through tree search which can prevent the weak LLMs from making similar mistakes in the past search process. In addition, we proposed a novel state selection method, which identifies the critical information from historical search processes to help RoT generate more specific and meaningful guidelines. In our extensive experiments, we find that RoT significantly improves the performance of LLMs in reasoning or planning tasks with various tree-search-based prompting methods (e.g., BFS and MCTS). Non-tree-search-based prompting methods such as Chain-of-Thought (CoT) can also benefit from RoT guidelines since RoT can provide task-specific knowledge collected from the search experience.
- Abstract(参考訳): 大規模言語モデル(LLM)は、木探索に基づくプロンプト手法と統合された場合、推論と計画において印象的な能力を示す。
しかし,これらの手法は過去の検索体験を無視するので,検索プロセスではしばしば同じ誤りを犯す。
この問題を解決するために,木探索によるプロンプト手法の性能向上を目的としたLLMリフレクションフレームワークであるリフレクション・オン・サーチ・ツリー(RoT)を導入する。
強力なLLMを使用して、以前の木探索経験からガイドラインを要約し、弱いLLMの能力を高める。
本ガイドラインは, 木探索による課題解決の指針であり, 過去の探索プロセスにおいて, 弱いLLMが同様のミスを犯すのを防ぐ。
さらに我々は,RoTがより具体的で意味のあるガイドラインを生成するのを支援するために,歴史的検索プロセスから重要な情報を識別する新しい状態選択手法を提案する。
広範囲にわたる実験の結果,RoT は様々な木探索手法(BFS や MCTS など)を用いた推論や計画作業において LLM の性能を著しく向上させることがわかった。
Chain-of-Thought(CoT)のような非ツリー検索ベースのプロンプト手法は、RoTが検索エクスペリエンスから収集したタスク固有の知識を提供することができるため、RoTガイドラインの恩恵を受けることができる。
関連論文リスト
- Technical Report: Enhancing LLM Reasoning with Reward-guided Tree Search [95.06503095273395]
o1のような推論アプローチは困難で、研究者はこのオープンな研究領域を前進させようとさまざまな試みを行ってきた。
本稿では,報酬誘導木探索アルゴリズムを用いて,LLMの推論能力を高めるための予備的な検討を行う。
論文 参考訳(メタデータ) (2024-11-18T16:15:17Z) - LiteSearch: Efficacious Tree Search for LLM [70.29796112457662]
本研究では,動的ノード選択とノードレベルの探索予算を備えた新しいガイド付き木探索アルゴリズムを提案する。
GSM8KおよびTabMWPデータセットを用いて行った実験により,本手法はベースライン法に比べて計算コストが大幅に低いことを示した。
論文 参考訳(メタデータ) (2024-06-29T05:14:04Z) - Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning [53.241569810013836]
本稿では,大規模言語モデル(LLM)を用いて,効率的な特徴生成ルールを同定するフレームワークを提案する。
我々は、自然言語で容易に表現できるため、この推論情報を伝達するために決定木を使用します。
OCTreeは様々なベンチマークで様々な予測モデルの性能を継続的に向上させる。
論文 参考訳(メタデータ) (2024-06-12T08:31:34Z) - Large Search Model: Redefining Search Stack in the Era of LLMs [63.503320030117145]
我々は,1つの大言語モデル(LLM)で検索タスクを統一することにより,従来の検索スタックを再定義する,大規模検索モデルと呼ばれる新しい概念的フレームワークを導入する。
全てのタスクは自動回帰テキスト生成問題として定式化され、自然言語のプロンプトを使ってタスクをカスタマイズできる。
提案フレームワークは,LLMの強力な言語理解と推論能力を活用し,既存の検索スタックを簡素化しつつ,検索結果の質を向上させる能力を提供する。
論文 参考訳(メタデータ) (2023-10-23T05:52:09Z) - Autonomous Tree-search Ability of Large Language Models [58.68735916408101]
大規模言語モデルは、高度なプロンプト技術で顕著な推論能力に優れています。
近年の研究では、LLMがより困難な推論タスクを解くために受動的木探索を行えるように、検索ロジックを定義するために外部プログラムを活用することが提案されている。
我々は,LLMの自律木探索能力という新しい概念を提案し,正しい解を求める探索軌跡を含む応答を自動生成する。
論文 参考訳(メタデータ) (2023-10-14T14:14:38Z) - Alphazero-like Tree-Search can Guide Large Language Model Decoding and
Training [37.79247073276239]
ToT(Tree-of-Thought)やRAP(Reasoning via Planning)といった最近の研究は、LLMの推論能力を強化することを目的としている。
LLMのためのAlphaZeroライクな木探索学習フレームワーク(TS-LLM)を提案する。
学習価値関数を用いた木探索がLLM復号を導出する方法を示す。
論文 参考訳(メタデータ) (2023-09-29T12:20:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。