Experimental demonstration of improved quantum optimization with linear Ising penalties
- URL: http://arxiv.org/abs/2404.05476v1
- Date: Mon, 8 Apr 2024 12:54:19 GMT
- Title: Experimental demonstration of improved quantum optimization with linear Ising penalties
- Authors: Puya Mirkarimi, David C. Hoyle, Ross Williams, Nicholas Chancellor,
- Abstract summary: We explore an alternative penalty method that only involves linear Ising terms and apply it to a customer data science problem.
Our findings support our hypothesis that the linear Ising penalty method should improve the performance of quantum optimization.
For problems with many constraints, where making all penalties linear is unlikely to be feasible, we investigate strategies for combining linear Ising penalties with quadratic penalties.
- Score: 0.562479170374811
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The standard approach to encoding constraints in quantum optimization is the quadratic penalty method. Quadratic penalties introduce additional couplings and energy scales, which can be detrimental to the performance of a quantum optimizer. In quantum annealing experiments performed on a D-Wave Advantage, we explore an alternative penalty method that only involves linear Ising terms and apply it to a customer data science problem. Our findings support our hypothesis that the linear Ising penalty method should improve the performance of quantum optimization compared to using the quadratic penalty method due to its more efficient use of physical resources. Although the linear Ising penalty method is not guaranteed to exactly implement the desired constraint in all cases, it is able to do so for the majority of problem instances we consider. For problems with many constraints, where making all penalties linear is unlikely to be feasible, we investigate strategies for combining linear Ising penalties with quadratic penalties to satisfy constraints for which the linear method is not well-suited. We find that this strategy is most effective when the penalties that contribute most to limiting the dynamic range are removed.
Related papers
- Differentiable Quantum Computing for Large-scale Linear Control [26.118874431217165]
We introduce an end-to-end quantum algorithm for linear-quadratic control with provable speedups.
Our algorithm, based on a policy gradient method, incorporates a novel quantum subroutine for solving the matrix Lyapunov equation.
arXiv Detail & Related papers (2024-11-03T00:54:33Z) - Inequality constraints in variational quantum circuits with qudits [1.0923877073891446]
Quantum optimization is emerging as a prominent candidate for exploiting the capabilities of near-term quantum devices.
Here, we study an alternative direct implementation of inequality constraints within the QAOA algorithm, achieved using qudit-SUM gates.
We find that the direct implementation of the inequality penalties vastly outperforms the slack variables method, especially when studying real-world inspired problems with many constraints.
arXiv Detail & Related papers (2024-10-10T07:32:38Z) - Exterior Penalty Policy Optimization with Penalty Metric Network under Constraints [52.37099916582462]
In Constrained Reinforcement Learning (CRL), agents explore the environment to learn the optimal policy while satisfying constraints.
We propose a theoretically guaranteed penalty function method, Exterior Penalty Policy Optimization (EPO), with adaptive penalties generated by a Penalty Metric Network (PMN)
PMN responds appropriately to varying degrees of constraint violations, enabling efficient constraint satisfaction and safe exploration.
arXiv Detail & Related papers (2024-07-22T10:57:32Z) - Quantum optimization with linear Ising penalty functions for customer data science [0.5242869847419834]
In quantum algorithms, constraints are typically implemented with quadratic penalty functions.
This penalty method can introduce large energy scales and make interaction graphs much more dense.
We consider linear Ising penalty functions as an alternative method for implementing constraints that makes more efficient use of physical resources.
arXiv Detail & Related papers (2024-04-08T12:46:22Z) - Improving Performance in Combinatorial Optimization Problems with
Inequality Constraints: An Evaluation of the Unbalanced Penalization Method
on D-Wave Advantage [0.0]
A new method known as unbalanced penalization has been presented to avoid using slack variables.
This work tests the unbalanced penalization method using real quantum hardware on D-Wave Advantage for the traveling salesman problem (TSP)
The results show that the unbalanced penalization method outperforms the solutions found using slack variables.
arXiv Detail & Related papers (2023-05-30T05:40:50Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
We develop an adaptive inexact Newton method for equality-constrained nonlinear, nonIBS optimization problems.
We demonstrate the superior performance of our method on benchmark nonlinear problems, constrained logistic regression with data from LVM, and a PDE-constrained problem.
arXiv Detail & Related papers (2023-05-28T06:33:37Z) - Penalized Proximal Policy Optimization for Safe Reinforcement Learning [68.86485583981866]
We propose Penalized Proximal Policy Optimization (P3O), which solves the cumbersome constrained policy iteration via a single minimization of an equivalent unconstrained problem.
P3O utilizes a simple-yet-effective penalty function to eliminate cost constraints and removes the trust-region constraint by the clipped surrogate objective.
We show that P3O outperforms state-of-the-art algorithms with respect to both reward improvement and constraint satisfaction on a set of constrained locomotive tasks.
arXiv Detail & Related papers (2022-05-24T06:15:51Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Unbalanced Optimal Transport through Non-negative Penalized Linear
Regression [9.668391961887027]
We show that the corresponding optimization problem can be reformulated as a non-negative penalized linear regression problem.
We propose novel algorithms inspired from inverse problems and nonnegative matrix factorization.
We derive for the first time an efficient algorithm to compute the regularization path of UOT with quadratic penalties.
arXiv Detail & Related papers (2021-06-08T07:16:37Z) - Scaling the Convex Barrier with Sparse Dual Algorithms [141.4085318878354]
We present two novel dual algorithms for tight and efficient neural network bounding.
Both methods recover the strengths of the new relaxation: tightness and a linear separation oracle.
We can obtain better bounds than off-the-shelf solvers in only a fraction of their running time.
arXiv Detail & Related papers (2021-01-14T19:45:17Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.